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I. Phys. A Math. Gen. 27 (1994) 1205-1232. Printed in the UK 

Symmetry bounds of variational problems 

Artemio Gonz&ez-L6pezt 
Depammento de Elsica Tedrica 11, Universidad Complutense. 28040 Madrid; Spain 

Received 10 August 1993 

Abstract. Sharp upper bounds on the dimension of the Lie algebra of inhibsimal variational 
and divergence point symmehies of a non-uivial Lagrangian L(x .  U, U', . . . , U("))@, U E Ut) of 
arbitmy order n are found. For any given order, all Lagrangians whose Lie algebra of variational 
or of divergence symmeuies is of maximal dimension are completely classified, modulo l o a l  
point transformations. It is shown, in particular. that for n 2 2 the algebra of variational 
symmeuies of the generalized h e  particle Lagrangian (U("))* is not of maximal dimension, 
whereas when n = 1 there are several Lagrangians admithg a variational s y m e h y  algebra of 
maximal dimendon and generating differential equations different kom the free particle equation. 
A connection between variational problems on the line and scalar evolution equations in one 
time and one space variables is also established, showing that Lagrangians with a variational 
symmehy algebra of maximal dimension correspond to evolution equations with a "al Lie 
algebra of time-preserving time-independent infinitesimal point symmetries. The technique used 
in the proof of the above results is applied to give a simple proof of the fact that an ordinary 
differential equation of order n > 2 has a symmetry algebra. of maximal dimension if and only 
if it is locally equivalent under a point transformation to the generalized free particle equation 
"(4 = 0. 

1. Introduction 

One of the first results obtained by Sophus Lie in his development of group theory is the 
f a a  that the Lie algebra of vector fields 

generating point symmetry transfonnations (symmetry algebra for short) of an ordinary 
differential equation . .  

of order k > 1, is finite-dimensional, provided that the components of the vector field X we 
real analytic. In fact, Lie [I] showed that the dimension of this algebra is bounded above 
by the integers 

i f k = 2  
{:+4 i f k > 2 .  (1.3) 

(This result has been extended recently to the case X E Cm, cf [Z].) Moreover, Lie also 
proved that these upper bounds are sharp, i.e. for every k > 1 there is a kth-order differential 
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1206 A Gonzdlez-L6pez 

equation (12) whose symmerry algebra has dimension exactly equal to (1.3). The simplest 
example of an equation having such a properly is given for all k 2 2 by 

u(k) = 0 (1.4) 

which we shall call the free particle equation by analogy with the k = 2 case. 
The above results have been partially generalized to systems of differential equations in 

normal form, i.e. such that each equation in the system can be solved for the highest-order 
derivative appearing in it. More precisely, it has been shown in [3] that the Lie algebra of 
(real analytic) infinitesimal point symmetries of a system of ordinary differential equations 
in normal form containing no first-brder equations is always finite-dimensional. Moreover, 
in the case of a normal system of m equations of order k 

uy) ' -fi(x,u1, - ..., %ll, ..., U('-') 1 ,...,U, @-l)) i = 1,2, ..., m (1.5) 

an upper bound on the dimension of the symmetry algebra has also been found in [3] and 
later refined in [4] (see also [5]), namely 

m Z + 4 m + 3  i f k = 2  
m2+m(k + 1) + 2  if k z 2. 

However, this upper bound is known to be sharp only fork = 2, when it is achieved by the 
m-dimensional free particle equation 

u y = O  i = 1 , 2  ,_.., m. 

The symmetry algebra of the m-dimensional generalized free particle equation of order 
k z 2  

ui (k) - - o , i = 1,2, ..., m 

has also been computed in [3], but its dimension m2 + km + 3 is strictly less than (1.6) 
when k z 2. Therefore, fork z 2 it is not known at present whether or not, for a given 
order k, the m-dimensional free particle equation of order k is the m-dimensional system 
with the largest symmetry algebra. 

Similar results for timeindependent time-preserving symmetries of evolution equations 
were recently obtained by Sokolov, [6]. Indeed, the Lie algebra of smooth (but not 
necessarily real analytic) infinitesimal point symmetries of the form 

0. at + w, u)a, + V ( X ,  u)a, (1.7) 

of an evolution equation 

a b  
u t =  f(x,u,u1, ..., U,) U'=- (1.8) ' - ax' 

is of n + 3 dimension at most when n > 1, and this bound is optimal. (Actually, Sokolov's 
result is slightly more general, since it applies to contuct symmetries as well, cf [6].) 

Surprisingly, the analogous problems for ordinary differential equations (1.2) arising as 
Euler-Lagrange equations of a Lagrangian L(x, U ,  U', . . . . dn)) have received little attention 
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in the litemhue. In this context, the 'natural' point symmetry transformations are of two 
types, variational and divergence, whose definition we shall now brieffy recall. 

Point transformations that preserve the action 

%tfl = S'' L(x ,  f (x ) ,  f'(x), . . . , f'"'(XDdx (1.9) 

associated to the Lagrangian L are called variational symmetries of L.  A vector field 
(1.1) is an infinitesimal variarional symmetry of L if it generates a one-parameter group of 
variational symmetries of L. The necessary and sufficient condition for a vector field (1.1) 
to be an infinitesimal variational symmetry of a La,oragian L is well known, namely 

xa 

pr("'X. L + LD,C = 0. (1.10) 

The notation used in this formula is that of reference [7], i.e. Dx is the total deriva$ive 
operator defined by the formally infinite sum 

(1.11) 

(1.12) 

(1.13) 

is the nthprolongation of the vector field X, whose components 
by the usual formulas 

U,. . . , U;) are given 

vi = D;(q - U& + ui+lE i = 1,2,. . . . (1.14) 

Divergence symmetries are usually defined directly at the infinitesimal level, cf [7]. by 
a natural generalization of (1.10). More precisely, a vector field (1.1) is an infrnitesimal 
divergence symmetry of a Lagrangian L(x,  U,. . . , U") if it satisfies 

pr(")X. L + LD& = D, f (1.15) 

for some function f ( x ,  U, . . . , Roughly speaking, this means that the one-parameter 
group generated by (1.1) preserves the action (1.9) up to the addition of a boundary term. 

The analytic characterizations (1.10) and (1.15) of the infinitesimal variational and 
divergence symmetries of a Lagrangian L are easy to understand if we consider the standard 
contact structure on the jet bundle J"(1, B) J" with local coordinates ( x ,  U, u1 , .  . . , U"). 
To this end, we introduce the usual basis of contact I-forms C,, = {e', ...,6'"}, defined by 

8' =dui-l - U ; &  i = 1,2, ..., n. (1.16) 
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The necessary and sufficient condition (1.10) for the vector field (1.1) to be an infinitesimal 
variational symmetry of the Lagrangian L(x,  U ,  . . . , U,) is then simply expressed by the 
equation 

f+X(Ldx) =OmcdC. (1.17) 

whereas infinitesimal divergence symmetries of L satisfy 

f&X(Ldx) = dfmodC, (1.18) 

with L v o  denoting the Lie derivative of the differential form o along the vector field V.  
The Euler-Lagrange equation 

(1.19) 

generated by a Iagangian L(x, U, .,..,U,) can always be locally expressed as a normal 
ordinary differential equation of order 2r for' an appropriate r ,  with 0 6 r 6 n. For 
example, if L is non-degenerate, i.e. i f  a2L/au; does not vanish identically, then the 
Euler-Lagrange equation is a normal differential equation of order 2n on a certain open 
subset, and therefore r = n in this case. On the opposite. end, when L can be written as 

L = Lo@, U )  + D x f  (1.20) 

for some function f : J"-' -+ R, then r = 0, since the Euler-Lagrange equation of L 
reduces to the trivial constraint 

aLo - ( x ,  U) = 0. 
au 

We shall call a Lagrangian of the form (1.20) a hivial Lagrangian; a particular instance 
of such trivial Lagrangians are null Lagrangians, of the form L = Dx f. In this paper 
we shall deal exclusively with non-trivial Lagrangians, whose Euler-Lagrange equations 
are genuine differential equations. If L is a non-trivial Cm Lagrangian, its Lie algebras 
of Cm infinitesimal variational and divergence symmetries need not be finite-dimensional. 
For instance, if L vanishes for ( x ,  U) outside an open subset M then any Cm vector field 
vanishing on an open subset strictly containing M is an infinitesimal variational symmetry 
of L, by (1.10) and the prolongation formula (1.14). On the other hand, if L(x ,  U, ..., U,) 
is Cm (or even merely of class C"+', so that its Euler-Lagrange equation (1.19) is well 
defined) and non-trivial, then its Lie algebras of real analytic infinitesimal variational and 
divergence symemtries are finite-dimensional. Indeed, the Euler-Lagrange equation of L 
is a normal ordinary differential equation on some open subset of J2' for appropriate r ,  
and therefore its symmetry algebra g is a finitedimensional Lie algebra of vector fields 
defined on some open subset M c E'. Hence the restriction to M of g'"-the Lie algebra 
of real analytic infinitesimal divergence symmetries of L-is finite-dimensional, being a 
subalgebra of g. That is easily seen to imply that gdy itself is finite-dimensional (and 
dimg'" < dimg), using the well known result that a real analytic function vanishing on a 
non-empty open subset must be identically zero on its whole domain. We shall therefore 
assume from now on that all Lagrangian? are non-trivial and of class Cm, and we shall 
only be interested in real analytic infinitesimal variational or divergence symmetries thereof. 
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Under these assumptions, bath the variational and the divergence symmetry~algebras are 
then finitedimensional. 

Once the finite dimension of the Lie algebras of variationd and of divergence symmetries 
of any non-trivial Lagrangian has been established (under the above hypotheses), we are 
faced with problems totally analogous to those considered above for ordinary differential 
equations in normal form and for evolution equations. First of all, we would like to compute 
a sharp upper bound on the dimension of the variational and divergence symmetry algebras 
of any Lagrangian L(x ,  U,. . . , U,) as a function of its order n > 1. Once this is done, 
it is also of interest to classify all Lagrangians of a given order n whose Lie algebra of 
variational or of divergence symmetries is of maximal dimension for that order. These are 
precisely the two main goals we have set outselves in this paper. 

To perform a classification of maximally symmetric Lagrangians, an appropriate 
equivalence relation has to be specified. However, as we shall discuss next, it is natural to 
use slightly different equivalence relations in the variational and in the divergence cases. 
To begin with, if we perform a local change of variables 

( x ,  U) H (Z, ti) = (&, U), H X .  U)) = W x ,  U) (1.21) 

it is well known that a Lagrangian L(x,  U ,  . . . , u.) is expressed in the new local coordinates 
(2, ti, .'. . , tin) of J" by the function i(Z, ti, . . . , ti,) related to L by 

L = (E o pr(") O)D,X (1 2.2) 

where the natural prolongation pr(") @ of (1.21) to J" is given by 

pr") ~ ( x ,  U,. . . . U,) = (z, ri, . . . , ii,) (1.23) 

with 

It is clear that (1.22) preserves the variational symmetry algebra and the Euler-Lagrange 
equation, by the well known invariance of these concepts under point transformations, cf 
[7]. We therefore make the following definition: 

Defntition 1.1. Two Lagrangians L(x,  U,. . . , u.) and E(.?, ri, ..., ti.) are equivaienr if 
there is a change of variables (1.21) and a non-zero constant c such that L and are related 
by 

L = c ( i  opr(") @)DJZ. (1.25) 

(Multiplication by a constant factor obviously does not change the variational symmetry 
algebra nor the Euler-Lagrange equation, and its inclusion in the previous definition 
is desirable in that it allows us to choose any convenient normalizaiton for L in each 
equivalence class.) 

It is this notion of~equivalence that we shall use to classify all Lagrangians possessing 
a Lie algebra of infinitesimal variational symmetries of maximal dimension. On the other 
hand, for the divergence symmetry classification it is more natural to use the following 
generalization of (1 25): 
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Defvlition 1..2. WO Lagrangians L(x, U,. . . , u.) and L(i, 8,. . . , r7,) are divergence 
equivalent if they are equivalent up to the total derivative of a function f : J"-' + B, i.e. 
if they satisfy 

(1.26) 

Notice that (1.26) preserves the divergence symmetry algebra (and the Euler-Lagrange 
equation), but in general it maps infinitesimal variational symmetries of L into infinitesimal 
divergence symmetries of I;. That is the reason why we cannot use the more general 
equivalence relation (1.26) for both the variational and the divergence classification. 

The paper is organized as follows. In section 2, we shall study the variational symmetry 
algebra of non-trivial Lagrangians of order n, showing that its dimension is at most n + 3, 
if n > 2, or 3, if n = 1. We shall also prove that this upper bound is sharp, and we shall 
locally classify all Lagrangians with a variational symmetry algebra of maximal dimension. 
These results are a bit surprising, since the dimension of the symmetry algebra of thefree 
particle Lagrangian 

(1.27) 

whose Euler-Lagrange equation is the fiee particle equation (1.4) of order 2n, is only n + 2  
when n > 2. Thus, contrary to what the case of scalar ordinary differential equations might 
suggest, the free particle Lagrangian does not have a maximal Lie algebra of infinitesimal 
variational symmetries if n > 2. If n = 1, the free particle Lagrangian does admit a 
variational symmetry algebra of maximal dimension, but as we shall see there are several 
other inequivalent first-order Lagrangians with this property. Section 3 is devoted to the 
same problems for infinitesimal divergence symmetries. We shall show that the divergence 
symmetry algebra of a non-trivial Lagrangian of order n is of dimension not greater than 
2nf3, and that any Lagrangian whose divergence symmetry algebra is (2n+3)dimensional 
is locally divergence equivalent to the free particle Lagrangian (1.27). Finally, in section 
4 we shall briefly explore some applications of the previous results to ordinary differential 
equations and evolution equations. 

L = c ( i  o pr") Q)DJ + 0,. f(x, U,. . . , u=-~). 

2 L = U, 

2. Variational symmetries 

In'this section we study the dimension of the Lie algebra of (real analytic) infinitesimal 
variational symmetries of a non-trivial Lagrangian L(x, U, . . . , u.) of order n > 1. Since 
the free particle Lagrangian (1.27) generates the free particle equation (1.4) (with k = Zn), 
which bas an infinitesimal symmetry algebra of maximal dimension, it would be natural to 
conjecture that (1.27) admits a variational symmetry algebra of maximal dimension. We 
shall see below that this supposition 'is false for n 2 2. In order to do so, we need to 
compute the variational symmetry algebra of the Lagrangian (1.27). This can be done by 
finding the general solution of the variational symmetry condition (LlO), or even more 
easily (since we know that the variational symmetry algebra is always a subalgebra of the 
symmetry algebra of the Euler-Lagrange equation), by starting with an arbitrary vector 
field in the symmetry algebra of equation (1.4) with k = 2n, and imposing that it satisfies 
condition (1.10). The symmetry algebra of the free particle equation has been computed by 
Lie himself, [I] (see also [3]). When k = 2, the symmetry algebra of (1.4) is the eighth 
Lie algebra in the classification of [SI (see table I), spanned by the vector fields 

a, a, xa, xa,, ua, ua. x2a, +d, xua, + u2au. 
(2.1) 
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This is the well known Lie algebra of the projective group SL(3). which acts locally on Rz 
via linear fractional transformations: 

On the other hand, when k > 3 a basis of the symmetry algebra of (1.4) consists of the 
k + 4 vector fields 

a, a. Xa, xa, ua. .Pa, +(k- i)xua. ria. 

2 <  i < k -  1. (2.2) 

The latter Lie algebra, which is isomorphic to a semidirect product of gI(2) with Rk, is the 
28th Lie algebra in the classification [8],  with r = k - 1. A straightforward calculation 
using (2.1) and (2.2) then yields the following proposition: 
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Proposition.2.1. For all n > 1, the Lie algebra of infinitesimal variational symmetries of 
the free particle Lagrangian L = U: is spanned by the n + 2 vectorfrelds 

a, a,, &a, + (2n - i)ua, xia, 1 < i k n -  1. (2.3) 

In the classification of [81, (2.3) is the 24th Lie algebra (with 01 = n - f and r = n - 1) 
when n > 2, and the fourth one (with ci = 4). when n = 1. To show that the variational 
symmetry algebra (2.3) of the free particle Lagrangian is not of maximal dimension when 
n > 2, we are going to consmct a Lagrangian L(x, U, . . . , U,) whose variational symmetry 
algebra is of dimension n + 3 if n > 2. To that end, we just consider a slight generalization 
of (1.27), namely 

L = U;. (2.4) 

c~q(") + u,Dxe = 0. (2.5) 

For the latter Lagrangian, the variational symmetry condition (1.10) reduces to 

From the prolongation formula (1.14) we easily see that when n > 2 (2.5) is equivalent to 
the equations 

q%"=o = 0 (2.6) 

and 

ciq. + (1 = [l - (n + l)ci].5, = 0. (2.7) 

Equation (2.6) is just the condition for the vector field (1.1) to be an infinitesimal symmetry 
of the free particle equation of  order n. Thus, the solutions of (2.5) are just the linear 
combinations of the vector fields (2.2) which satisfy the additional conditions (2.7). It is 
now a straightforward matter to check that the general solution of  (2.5) depends on n + 2 
arbitrary parameters, except in the following two cases: for ci = 2/(n + 1) and arbitrary 
n 2 2, and for n = 2 and CY = 4. In the formermse, the solution of (2.5) is 

e = P&) q = f (n  - l)uP&) + Q,-l(x) (2.8) 

with Pz and Q.-l polynomials of degree 2 and n - 1 in x .  In the exceptional case n = 2 and 
(Y = 4, the general solution of (2.5) depends on 5 = n + 3 parameters, so it just provides 
an additional example of a second-order Lagrangian with a five-dimensional variational 
symmetry algebra, inequivalent to (2.8) with n = 2. In particular, we have proved the 
following proposition: 

Proposition 2.2. 
of the Lagrangian 

For every n > 2, the Lie algebra of injinitesimal variational symmetries 

n (2.9) L = U 2 / ( n + l )  

is spanned by the n + 3 vectorjieldr 

a, a, &a, + (n - m a .  2 a X  + (n - i)xuau da .  
1 < i < n  - 1. (2.10) 
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The (n + 3).dimensional Lie.algebra (2.10) is the 27th Lie algebra in the classification [8], 
with r = n - 1. Algebraically, it is a semidirect product of sI(2) with R". 

The previous proposition shows that the free particle Lagrangian does not have a 
variational symmetry algebra of maximal dimension if n 2 2. The question is now whether 
or not the variational symmetry algebra (2.10) of the Lagrangian (2.4) is of maximal 
dimension, or in other words whether .or not the dimension of the variational symmetry 
algebra of any Lagrangian of order n > 2 cannot be greater than n + 3. We shall prove 
below that this is indeed the case. We shall also deal with the n = 1 case, showing 
that the first-order free particle Lagrangian does have a Variational symmetry algebra of 
maximal dimension, although it shares this propem with several other inequivalent first- 
order Lagrangians. 

To prove these results, we shall use the following simple strategy. Let g"' be the Lie 
algebra of real analytic infinitesimal variational symmetries of a Lagrangian L ( x ,  U ,  . . . , u.). 
From [8], we know that there is an open subset M c 8' and appropriate coordinates on M 
such that gvmIu. the restriction to M of the vector fields in gw, is one of the 28 types of 
Lie algebras listed in table 1. Furthermore, since the vector fields in g"" are real analytic, 
it is easy  to show that gvplM and g"" have the same dimension (and they are therefore 
isomorphic). Hence, to find an upper bound on dimg"' we shall simply go through table 1, 
computing for each Lie algebra gi in the table the most general Lagrangian of order n 
admitting gi as a Lie algebra of infinitesimal variational symmetries. When performing this 
calculation, it is convenient to deal separately with the cases n > 2 and n = 1. Indeed, if 
n > 2 we can assume that the dimension di of gi is not greatex than n + 3, or equivalently 
that n satisfies 

2 < n Q di - 3 (2.11) 

since for every n 2 2 the variational symmetry algebra (2.10) of the Lagrangian (2.9) is 
(n+3)-dimensional. (Were we only interested in finding an upper bound on the dimension of 
the variational symmetry algebra, without classifying all Lagrangians admitting a variational 
symmetry algebra of maximal dimension, we could replace the second inequality in (2.11) 
by a strict inequality.) On the other hand, in the case of first-order Lagrangians we only 
need to work with Lie algebras of dimension greater than or equal to three, that is 

d; > 3 (n = 1) (2.12) 

since the variational symmetry algebra of the first-order free particle Lagrangian is three- 
dimensional, cf proposition 2.1. 

We can further strengthen the first inequality in (2.1 I), and reduce the number of Lie 
algebras that we have to consider in the first-order case, by making use of the following 
proposition: 

Proposition 2.3. A non-trivial Lagrangian L ( x ,  U,. . . , u.) has at m s t  n linearly 
independent infinitesimal variational symmetries of the form q(.x)&. 

Proof. Indeed, if then+l vector fields qi(x)&,, 1 6 i 6 n f l ,  are infinitesimal variational 
symmetries of L(x ,  U , .  . . , U"), by equations (1.10) and (1.13)-(1.14) we must have 

n i ~ o  + ~ I L ,  + ... + #'L* = o 1 Q i < n + 1 
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where ' 

Let 

(2.13) 

(2.14) 

denote the Wronskian of the functions qi, 1 < i < n + 1; if 

M = Ix E IfB I W [ W ,  . . ~ n t 1 1 0 )  # 0) 

then 

Li ( x ,  U, . . . , U") = 0 0 4 i < n (2.15) 

for all x E M and all U, u1 , .  . . , U,. By the analyticity of the functions qi, if M is not empty 
then it is open and dense in R, in which case (2.15) must hold everywhere by continuity. 
This would imply that L is a function of x only, contradicting the non-triviality assumption. 
Hence we must have 

W[q1, . . . , %+11 = 0 

everywhere. The following lemma then implies that 91.. . . , qn+l are linearly dependent 

Lemma 2.4.. Let qi : R + R be real analytic for  1 < i < k. If the Wronrkian W[qI ,  . . . , q k ]  
vanishes for a l Z  x E Pn, then q1.. . . , qu are linearly dependent Over the reals. 

Proof. The proof is an easy induction argument. For k = 1, there is nothing to prove. 
Assuming now that the lemma holds for all positive integers k < n, we shall prove it for 
k = n + l .  

If W [ q l , .  . . , q,] vanishes identically, we' are done by the induction hypothesis. 
Otherwise the analyticity of the functions qi implies that the set 

M = { X  E R I W h 1 3  . . qnl(x) # 01 (2.16) 

is open and dense. From the vanishing of W [ q , ,  . . . , qn+l] it immediately follows that 
q l ,  . . . , qn+l satisfy the equation 

(2.17) 

which by (2.16) is a nth-order linear differential equation on the open set M. By the 
elementary theory of linear differential equations, the n + 1 functions qi must be linearly 
dependent on M ,  and since this set is dense in R the lemma follows. 

Remark. Although elementary, this lemma is not totally trivial. For example, it is not true 
if the functions qi are merely Cm. 
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Let Si denote the dimension of the Abelian subalgebra of gi whose elements are the 
vector fields of the form q(x)a. belonging to gi. From proposition 2.3, it follows that if 
gi is a Lie algebra of infinitesimal variational symmetries of a Lagrangian L(x, U,. . . , U,) 
then 6i < n. Therefore, we can replace (2.1 1) by 

max(2, Si) < n < di - 3. (2.18) 

Similarly, when dealing with first-mder Lagrangians we need only consider those Lie 
algebras in table 1 satisfying 

Si Q 1 and di > 3. (2.19) 

We shall now perform the calculation described above, computing for each of the 28 
Lie algebras of real analytic vector fields gi listed in table 1, the most general Lagrangian 
admitting gi as a Lie algebra of variational symmetries. As explained before, we treat 
separately the cases n 2 2 and n = 1. 

Case 1. n 2 2. 
It turns out that conditions (2.18) are very restrictive, and in fact allow us to completely 
eliminate many of the 28 types of Lie algebras in table 1 from consideration. Indeed, from 
(2.18) it follows that any Lie algebra gi such that 

di i max(5,& + 3)  (2.20) 

can be safely excluded from ourcalculation. Thus, the only Lie algebras we have to consider 
in this case are those of types 5-8, 15-16 and 26-28. 

Type 5. In this case, n = 2 from (2.18), and an elementary calculation shows that 
the only second-order Lagrangian admitting this algebra as a Lie algebra of infinitesimal 
variational symmetries is 

L = (uxx)lfi .  (2.21) 

Type 6. First of all, we can take n = 3 by (2.18). Symmetry under the generators a,, 
a. and xa, implies that L is a function of uz and ug only. Finally, imposing that ua., ua, 
and xa, be infinitesimal variational symmetries of L(uz, u3) we easily obtain the equations 

uzL2 + u3L3 = 0 

(ulu3 +3u;)L3 = UlL 

2uzLz + 3u3L3 = L 

from which it immediately follows that L must vanish. 
Type 7. Again, (2.18) implies that we can take n = 3, and symmetry under the 

generators 8, and 3, means that L is a function of the variables ( ~ 1 . ~ 2 ,  u3). Demanding 
that the generators x&+ua,, ua, -xa ,  and (x2-uz)~,+2xua, be infinitesimal variational 
symmehies of L ,  after some elementary manipulations we arrive at the system 

/ I +  U;)Li + 2UiUzLz + (2UiU3 + 3U3L3 = 0 
UZLZ + 2u3L3 = L 

(1 + U1)’Lz + ~ U I U Z L ~  = 0. 
(2.22) 
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Solving the ,last two equations we get 

L = A(u1)u’” 

withu=3uluz-(1+u:)u3. 
Substituting (2.23) into the first equation (2.22) yields 

‘2(1+ uf)A’ + [ZU~ + ~ u : ( u :  - I)u-’]A = 0 

(2.23) 

which implies that A, and hence L,  must vanish. 
Type 8. As before, from (2.18) and the presence of the generators a,, 3, and xa, in gs 

we deduce that L is a function L ( u z , .  . . , U+ Combining the equations obtained requiring 
that the generators uau, xa,, x2a, +x&, and ua, be infinitesimal,variational symmelriies 
of L it is straightforward to obtain the following system of partial differential equations: 

The general solution of this system is easily found to be 

(2.25) 

where c is an arbitrary constant. The Lagrangian (2.25) automatically admits the remaining 
generator x u &  + u2a, as an infinitesimal variational symmetry, since we have 

C L = -(gu& - 4 . 5 ~ ~ ~ 3 ~ 4  + 4 0 ~ : ) ” ~  
U 2  

[ua, - ~ a . , ~ ~ a , + ~ ~ a , ] = ~ u a , + ~  2 a.. 

Type IS. An easy calculation along the lines of that for the algebra g6 shows that no 
non-trivial Lagrangian satisfying conditions (2.18) admits this algebra as a Lie algebra of 
infinitesimal variational symmetries. 

Type 16. As above, conditions (2.18) and Symmetry under the translations a, and a. 
allow us to deduce that L is a function L(u1, ~ 2 , 1 1 3 ) .  A calculation totally analogous to 
that we just performed for gs then shows that the most general Lagrangian of the above 
form admitting this algebra as a Lie algebra of variational symmetries is 

(2.26) 

with c an arbitrary constant. 
Types 26 and 28. In both cases, it is easy to show that there are no non-trivial 

Lagrangians satisfying the inequalities (2.18) which admit either of these algebras as Lie 
algebras of infinitesimal variational symmetries. For example, for g, conditions (2.18) and 
symmetry under the generators 8, and xi&, 0 < i < r ,  imply that L is a function of U,+I 
and ur+2 only. Symmetry under the scalings xa, and ua. is easily seen to imply that 

U,+2LI+Z = L 

from which it follows that L is of the form 

L = h(u,+1)ur+z = 4 h(s) ds. 
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Hence L is a trivial Lagrangian. 
Type 27. In this case. d27 = r + 4  and 827 = r + 1, so n = r + 1 by (2.18). Furthermore, 

symmetry under the generators 8, and xlau,  0 < i < r ,  implies in the usual fashion that L 
is a function of U, only. Symmetry under the scaling 2x8, + rua. yields 

n (2.27) 

with c constant. Finally, it is immediate to check that the latter Lagrangian admits the 
remaining generator .$a, + rxua. as an infinitesimal symmetry. This is in agreement with 
the results of proposition 2.2. 

Remark. Strictly speaking, the above calculations only show that the Lagrangians (2.21), 
(2.25), (2.26) and (2.27) admit, respectively, the Lie algebras 55, g8, gI6 and 527 as 
subalgebras of their variational symmetry algebras. For the Lagrangians (2.21) and (2.27), 
the calculation preceding proposition 2.2 shows that gs and g8 are actually equa6 to the 
variational symmetry algebras of these Lagrangians. For the remaining two Lagrangians, 
the same result can be easily deduced from the fact that we have not found any Lie algebra 
5 of vector fields on Rz with the property that there exists a Lagrangian of order n with 
2 < n < dim5 - 4 admitting g as a Lie algebra of variational symmetries. 

L = cu2/(n+l) 

The results of the above calculation can be conveniently summarized in the following 
theorem: 

Theorem 2.5. If L is a non-trivial Lagrangian of order n > 2 the dimension of its 
variational symmetry algebra gym is at most n + 3. Moreover, qdim5- is exactly equal 
to n + 3 then L is equivalent, under an appropriate local change of variables (cf Definition 
i.i), w one of the four Lagrangians listed in the following table 2: 

Table 2. Lagrangians of order > 2 possessing a variational symmetry algebra of maximal 
dimension. 

Lagrangian Algebra srmcture 

gn(r = n - 1) 

gs 

SI(2) K R“ 2/(“+11 
U. 

1 
U2 

1 
- 1 2 ~ 1 ~ 3  -3u:11n 516 
U1 

4 ’ 3  95 S@) K R2 

5k3) -(9u:us - 45u2u3u4 + 404)”3 

d(2) b d(2) 50(2,2) 

From the previous table we see that, if n 2 2 and n is not equal to 2, 3 or 5, then there 
is one and only one Lagrangian of ,order n with a variational symmetry algebra of maximal 
dimension, namely L = u~’cn+l) (up to equivalence). On the other hand, for each of the 
‘anomalous’ orders n = 2,3 ,5  there are exactly two inequivalent Lagrangians possessing a 
maximal variational symmetry algebra. 

We have shown above that the free particle Lagrangian (1.27) does not possess a 
variational symmetry algebra of maximal dimension when n 2 2. However, since the 
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variational symmetry algebras of two Lagrangians differing by a total derivative do not 
necessarily coincide, the natural question arises of whether a function f : J"-' + W can 
be found such that the modified free particle Lagrangian 

L = U: + Dx f (2.28) 

admits a variational symmetry algebra of dimension n + 3 for n 2 2. This question can be 
easily settled in the negative with the help of the previous theorem. Indeed, if (2.28) had a 
(n + 3)-dimensional variational symmetry algebra then it would be locally equivalent under 
a change of variables 

2 = q ( x ,  U) ii =-~@(x, U) (2.29) 

to one of the Lagrangians E listed in theorem 2.5. If that were the case, according to (1.25) 
we would have 

(2.30) 

where c is a constant and 2i is given by equations (1.23) and (1.24). However, it is easy 
to show that for n 2 2 the last component iin of the nth prolongation of (2.29) is linear in 
U,, that is we can write 

ii,, = A ( x ,  U , .  . . , un-i)un + B ( x ,  U,.  . . , ~"-1)  (2.31) 

for certain functions A, B : J"-' -+ W. (Actually, it can be shown that A depends only 
on ( x ,  U, ul), but this will not be needed in what follows.) The (local) equality (2.30) is 
therefore impossible, since the right-hand side is a second-degree polynomial in u., while 
from (2.31) it follows that the left-hand side is not a polynomial in U,, for any of the 
Lagrangians of theorem 2.5. 

To conclude this case, we shall briefly discuss the connection of the above results with 
the standard equivalence problem for Lagrangians on the line under point transformations 
[9], [lo], [ll]. Kamran and Olver [ll], have shown that the latter equivalence problem can 
be reduced to an {e}-structure on J 2  for all second-order Lagrangians, except for those of 
the form 

(y = 1 or (I = 2 (2.32) 

This result implies that the dimension of the variational symmetry algebra of any second- 
order Lagrangian not of the form (2.32) is at most equal to dimJ2 = 4, whereas a 
La-mgian of the form (2.32) could in principle have a symmetry algebra of dimension 
peater than 4 for appropriate A, B .  This is in total agreement with the results of proposition 
2.1 and theorem 2.5. For order n z 2, the characterization of the Lagrangians for which the 
equivalence problem reduces to an [e]-structiue on J" is not precisely known. All we can 
say in this case is therefore that, since any Lagran,&n having the latter property necessarily 
has a variational symmetry algebra of dimension not greater than dim J" = n + 2, it cannot 
be equivalent under a point transformation to one of the first three Lagrangians listed in 
theorem 2.5. 

L = (A(x ,  U, uJuXz + B(x ,  U, U,))= 3 3 '  
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Case 11. n = 1. 
According to condition (2.19), the only Lie algebras of vector fields we have to consider 
for this case are those of types 1-4, 7, 11-19, 23, and 25. Since we are now dealing 
exclusively with first-order Lagrangians, there is an additional simplification we can make: 
if the algebra contains the translations a, and a,, and at least one of the generators xa,, ua,, 
ua,, or xa, +ua,, then any first-order Lagrangian admitting such an algebra as a Lie algebra 
of variational symmetries can be shown to be necessarily trivial. We can therefore exclude 
such algebras from consideration, which leaves only the Lie algebras of types 1-3, 11-12, 
17-19, and 23 and 25 (for r = 1). For each of~these algebras, the calculation proceeds 
exactly along the same lines as in the previous case, except for the following minor point. 
Since the Lie algebras g3 and g,, do not contain either a, or a. in the canonical coordinates 
used in reference [SI, it is convenient in these cases to change to new (local) coordinates 
in which one of the generators reduces to a translation. For g3, this amounts to a standard 
change to polar coordinates (see below), whereas for the Lie algebra of type 17, whose 
generators are 

a, + a. xa, + Ua. x2a, + U2a, (2.33) 
the linear change of variables 

x = x + u  u = x - U  
transforms the vector fields (2.33) into 

ax xa, + uaU (x2 + m a x  + z x u a u  (2.34) 
up to unimportant constant factors. In what follows, we shall use these coordinates in 
preference to those of [SI. 

By way of example, we shall now give the details of the calculation for the Lie algebra 
g3 M S0(3), spanned by the vector fields 

First of all, it is convenient to change to polar coordinates (r, e), where 
x =rcos@ u = r s i n @  

and we regard r as the independent variable. Under this change of coordinates, the first 
two generators transform respectively into 

up to irrelevant constant factors. The expression for the remaining generator is not needed, 
since it equals the commutator of the tirst two, and therefore it is automatically an 
infinitesimal variational symmetry of L if the first two generators are. Symmetry under 
the first generator implies that L is a function of r and @, only, while imposing symmetry 
under the second generator we obtain the equation 

ua, - xa, (1 + X* - u2)a, + 2 x U a ,  2xua, + (1 + - 2)a.. 

as cos@(1 +r2)a,+sin@(1 -r-')aa 

2r cos 0 
1 +r2 

1 '  . 
rz 

cos@L, + -[sm@(1 +r2@:) -r@,cos@]Ler = - - 

Since L does not depend on 0; equating the coefficients of cos0 and sin@-in both sides of 
the previous equation we obtain a system of two linear partial differential equations for L, 
whose general solution is easily found to be 

JTFq 
L = c  

1 +r2  
(2.35) 

c being an arbitrary constant of integration. 

Lie algebras: 
The following theorem summarizes the results of similar calculations for the remaining 
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Theorem 2.6. Let L be a non-trivialfrst-orderlagrangian, and let us denote its variational 
symmetry algebra by gvm. Then 8"" is at most three-dimensional, and ifdimgvm is e m t l y  
equal to three then L is equivalent, under an appropriate change of local coordinates, to one 
of the five Lagrangians listed in the following table 3: 

Table 3. Firsborder Lagrangians admitting a variational symmeuy algebra of maximal 
dimension. 

Lagrangian Algebra Structure 

e"W.,Jrr;Z; ((I > 0) 81 R2KR 

m 
U 82 

83 SOU) 

In contrast with the case n > 2, the first-order free particle Lagrangian-the fourth entry 
in the previous table, for cf = ;-possesses a variational symmetry algebra of maximal 
dimension, but is by no means the only first-order Lagrangian with this property. The 
second, third and fifth Lagrangians in the previous table, apart from being inequivalent to 
the free particle Lagrangian in the sense of definition 1.1, generate second-order equations 
different from the free particle equation. 

The above results are in complete agreement with Kamran and Olver's solution of 
the equivalence problem for first-order Lagrangians on the line under point transformations. 
Indeed, Karman and Olver [ 121, have proved that the latter problem is always reducible to an 
(e}-smcture on J'. Hence the dimension of the variational symmetry algebra of a first-order 
Lagrangian cannot exceed dim J' = 3, in agreement with theorem 2.6. Furthermore, Olver, 
[Z], classifies all first-order Lagrangians with a three-dimensional variational symmetry 
algebra under complex point transformations. (Notice, however, that in [2] two Lagrangians 
differing by a constant factor are not considered to be equivalent.) To compare Olver's 
results with theorem 2.6, it is important to realize that some of the Lagrangians listed in the 
latter theorem are. equivalent under complex point transformations. Indeed, the Lagrangian 

= e~mlancz 

is equivalent up to a constant factor to 

(I-iu)/Z L = U, (2.36) 

under the complex point transformation 

Z = x + u  i = i ( x - u )  
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while the Lagrangians 

J1 +e: 
L* = - qTT?q L,  = 

1 + r 2  U 

are equivalent up to a constant factor to 

L =  
U 

respectively under the complex changes of variables 

x = fe-" (r - r-') U Le-iO(r 2 +r-')  

(2.37) 

and 

f = x  i = iu. 

The Lagrangians (2.36), (2.37) and 

L = e-"' (2.38) 

are not equivalent under complex point transformations, since the complexifications of 
their variational symmetry algebras are clearly not isomorphic. We therefore conclude that 
there are only three equivalence classes of first-order Lagrangians with a three-dimensional 
variational s y m e e y  algebra, up to complex point transformations and multiplication by a 
constant, given by the Lagrangians (2.36)-(2.38). This is exactly the same result obtained 
in [2],  since the Lagrangian (2.37) is equivalent up to a constant factor to 

t=J- 

under the point transformation 

for any complex constant U.  

We conclude this section by pointing out that, if L is one of the Lagrangians listed in 
theorems 2.5 and 2.6, the functional 1 L dx can be naturally interpreted as an arc length 
invariant under the variational symmetry group of L. Indeed, if G is a (connected) finite- 
dimensional Lie group of transformations of the plane, invariance of 1 L dx is expressed 
infinitesimally by (1.17), for every vector field X in the Lie algebra g of G, and is thus 
equivalent to requiring that 5 be a Lie algebra of infinitesimal variational symmetries 
of L. Furthermore, if g is the variational symmetry algebra of one of the maximally 
symmetric Lagrangians L ( x ,  U,. . . , u.) of theorems 2.5 and 2.6, by the latter theorems 
the only functionals 1 F ( x ,  U ,  . . . , U,) dx of order r 6 it invariant under the Lie group of 
transformations generated by 5 are the constant multiples of j" L dx. 

The simplest instance of the above remark is provided by the maximally symmetric 
first-order Lagrangian m, with variational symmetry algebra spanned by the vector 
fields a,, 8, and ua, - xa,. The latter is the Lie algebra of the group of Euclidean motions 



1222 A Gonzblez-L6pez 

(i.e. translations and rotations) of the plane, and mdx is of course the well !mown 
Euclidean line element. Another interesting first-order example is provided by the Lie 
algebra gi2 sx E% K R2 for CY = -1, which is spanned by the vector fields 

a, a,, xa, -ua, (2.39) 

with associated invariant arc length element 

L = U;? (2.40) 

If we perform the change of variables 

x = t + y  u = t - y  (2.41) 

from (2.39) we obtain the equivalent basis of 

a, 3, ~ a ,  +'ay (2.42) 

which is the standard basis of the Poincark group in R x B. Under the change of variables 
(2.41), (2.40) becomes the usual proper time element 

(2.43) 

which is of course invariant under PoincarC transformations. 
For a second-order example, take the maximally symmetric Lagrangian (uXr)'J3, whose 

variational symmetry algebra g5 (cf theorem 2.5) is the Lie algebra of the group of special 
affine motions of the plane (generated by translations and linear transformations with 
determinant equal to one). The integral S(U,) ' /~ dx is the standard arc length invariant 
under the group of special plane affine motions,'[13], [14], [15]. Likewise, the Lagrangian 
L = U;' 1 2 ~ 1 ~ 3  - 3u21 IS symmetric under the Lie algebra gI6, which generates the 
following realization of SL(2)$SL(2) as a Lie group of plane transformations: 
7. 

As before, the arc len& L dx is invariant under the transformations (2.44). In particular, 
L itself is invariant under the SL(2) subgroup of transformations (2.44) fixing the first 
coordinate. This should come is no surprise, since L is just the square root of the Schwarzian 
derivative of U, a well h o w n  SL(2) invariant. Finally, a straightforward calculation shows 
that the Lagrangian 

~ ; ' ( 9 $ ~ 5  - 4 5 ~ ~ ~ 3 ~ 4  + 4Ou:)'l3 

associated to the Lie algebra gs ~ c 1  d(3) of the group of projective plane transformations, 
coincides up to a numerical factor with the projective arc element, [16]. 
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3. Divergence symmetries 

We shall address in this section the problem of bounding the dimension of the Lie algebra 
of real analytic infinitesimal divergence symmetries, as well as locally classifying all 
Lagrangians possessing a divergence symmetry algebra of maximal dimension. We shall 
follow the same strategy as used in the previous section, with a few minor modifications 
that we shall explain as we proceed. As in the previous section, we begin by computing 
the divergence symmetry algebra of the free particle Lagrangian (1.27). To this end, it 
suffices to Write down an arbitrary linear combination of the generators (2.1) or (2.2) (with 
k = Zn) of the symmetry algebra of the free particle equation, and impose that they satisfy 
the divergence symmetry condition (1.15). The result is given by the following proposition: 

Pmposition 3.1. For all n > 1, the divergence symmetry algebra of the free panicle 
Lagrangian L = U: is spanned by the 2n + 3 vectorfields 

a, a, xa. &a, + (2n - i)ua, xza, + (2n - ibUa,  
xia, 2 < i < 2 n - 1 .  (3.1) 

Notice that the latter Lie algebra is of type 27, with r = 2n - 1. Proceeding as 
in the previous section, we should now compute the variational symmehy algebra of the 
Lagrangian (2.4). However, in this case the latter Lagrangian does not have a divergence 
symmetry algebra of dimension grater than n + 3, if LY # 2. This, and the fact that the 
dimension of the divergence symmetry algebra is bounded by 2n + 4 (the dimension of the 
symmetry algebra of the Euler-Lagrange equation; cf the introduction), suggests that in this 
case the free particle Lagrangian has a divergence symmetry algebra of maximal dimension 
for all n 1. We shall show below that this is indeed the case. In fact, we shall prove 
that any Lagrangian with a divergence symmetry algebra of maximal dimension 2n + 3 is 
locally divergence equivalent to the free particle Lagrangian. 

To this end, we need to suitably generalize proposition 2.3 to infinitesimal divergence 
symmetries. We start by proving the following preliminary lemma: 

Lemma 3.2. 
N > n linear partial differential equations of the form 

Suppose that a nth-order bgrangian L(x ,  U, . . . ~ U,) sati.rfes a system of 

e q y ) ( x ) L j  = 4. f i ( x ,  U,. . . , U”-,) +q(x)u 1 < i < N .  (3.2) 
j=O 

Ifthefunctions qi (x), 1 < i < N ,  are real analytic and linearly independent, then there exist 
functions hi, 0 < i < n, and p such that 

where x denotes divergence equivalence (cf Definition 1.2). 

Proof. Differentiating (3.2) twice with respect to U, we obtain 

n 

x q y ) ( x ) A j  = O  
j=O 

1 < i  < N 

(3.3) 
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where A =L.,. Since N > ,n ,  arguing as in proposition 2.3 and lemma 2.4 we conclude 
that 

A = L,, = A,(x), 

and integrating twice we obtain 

L = $A~(x)u: + C U ( X ,  U,. . . , u ~ - I ) u ~  + B ( x ,  U,. . ., ~ ~ - 1 )  

2 
st: $&)U, + n ( x ,  U,. . .( U n 4 )  i. 

Using the identities 

(3.4) 

it is straightforward to show that a total derivative Dz . q(x. U, . . . , un-~) satisfies (3.2), 
with ut = 0 and 

It follows that i also satisfies (3.2), with fi replaced by a suitable function j, 1 < i < N .  
For simplicity, we shall write fi instead of 3 in what follows; substituting then (3.4) back 
into (3.2) and equating the coefficients of un on both sides of the resulting equation, we get 

fi = A ~ ( X ) . # ) ( X ) U ~ - ~  + j%x, U,. . . , 1 < i < N 

and 

= 
I .&x, U,. . . , u"-~) + [o;(x) + (-~)"-'(A"~P))(~)(X)]U I < i < N .  

The lemma then easily follows by induction, 

Proposition 3.3. 
linearly independent infinitesirkl divergence symmetries of the form q(x)a.. 

Proof. Indeed, suppose that L had 2n + 1 linearly independent infinitesimal divergence 
symmetries vi(n)au, 1 < i < 2n + 1. By the divergence symmetry condition (1.15) and the 
previous lemma (with ui = 0) we obtain 

A non-trivial Lagrangian L(x ,  U, . . . , U,) of order n admits af most 2n 
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where e also admits the vector fields q(x)a, , ,  1 < i < 2n + 1, as infinitesimal 
divergence symmetries by the invariance of this concept under divergence equivalence (cf 
the introduction). From the divergence symmetry conditions applied to e we then get 

n 

~ A j $ ’ u j  + wqi = Ox fi 1 < i < 2n + 1 
j=O 

whence we immediately deduce that 

for certain functions gi whose explicit expression is not needed. The latter equations can 
only be satisfied if the coefficient of U in the left-hand side of each of them vanishes, that 
is we must have 

Since L is not trivial by hypothesis, the functions A i , 1  < i < n, cannot all vanish identically. 
Hence there is an open interval M and a positive integer r ,  1 < r < n,  such that A&) # 0 
for all x E M and Ai = 0 on M for all i 5 r .  By (3.6), this implies that the restrictions to 
M of the functions vi, 1 < i g .?A + 1, are 2n + 1 solutions of a linear differential equation 
of order 2r < 2n on M .  This is of course absurd, since the analyticity of the functions 7; 
implies that their restrictions to M are still linearly independent. 

As in the previous section, we shall now go through the list of inequivalent Lie algebras 
of vector fields in table 1, computing the most general non-trivial Lagrangian of order n 
admitting each of these algebras as a Lie algebra of infinitesimal divergence symmetries. 
Since we are only interested in Lagrangians possessing a divergence symmetry algebra of 
maximal dimension, by proposition 3.1 we can assume (using the notations of the previous 
section) that di > 2n + 3, and from proposition 3.3 we must also have Si < 2n. In other 
words, we can replace conditions (2.18) and (2.19) by the inequalities 

6i < 2n < di -3. (3.7) 

Notice that in this case there is nothing special about the order n = 1, so we shall just 
assume that n > 1 throughout. From (3.7), we conclude that we can exclude from our 
calculation those Lie algebras that do not satisfy the condition 

di 2 maw@, & + 3) (3.8) 

thus, we only have to consider the algebras of types 5-8, 15, 16, and 2 6 2 8 .  Another useful 
fact we shall use in what follows is that, if Si > n+ 1, then from Lemma 3.2 it follows that 
L is of the form (3.3); this is the case for the Lie algebras of types 5.6, and 26-28. Finally, 
if L is of the form (3.3) and the scaling ua. is an infinitesimal divergence symmetry of L, 
then we must have 

i=O 
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which can only be satisfied if all the functions Ai ,  0 Q i Q n, and p, and therefore L, 
vanish identically. This allows us to e l i t e  the Lie algebras of types 6.26, and 28, and 
we are therefore left with the algebras of types 5, 7, 8, 15, 16, and 27. 

Dpe 5. To begin with, L is of the form (3.3) in this case. From (3.71, L is fist-order, 
and imposing symmetry under the translations 8, and a. we obtain that L must be of the 
form 

'L = $,U: + p ~  

with A1 and p constant. Demanding now that xa, - ua, be an infinitesimal divergence 
symmetry of L we obtain 

which implies that AI = 0 and L is trivial. 

translations 8, and a. implies that 

-0 

- & L ~ K :  = D, f 

Dpe 7. In this case, L is again a first-order Lagrangian by (3.7). Symmetry under the 

_- aLll aLll 
ax au 
_-  - 

which after an elementary calculation yields 

L U ( K x )  + bU 

with b constant. Imposing now symmetry under the scaling xa, + ua, we easily find that 
U" = 0, and hence L is necessarily trivial. 

Type 8. For this algebra, (3.7) implies that we can take n = 2. Imposing symmetry 
under the generators a,, a., and xa. we easily obtain, as in the previous case, that L is of 
the form 

L = u(uXz) +b(x ,  U ,  uX).  

Imposing now symmetry under the vector field xa, + 2ua, we immediately deduce that 
U" = 0, and therefore L is actually equivalent to the first order Lagrangian b(x, U, K ~ ) .  
From this and the fact that g5 is a subalgebra of gs we conclude that L is again trivial. 

Types 15 und 16. In both of these cases, n = 1 by (3.7). The presence of the vector 
fields a,, a,, and xa, + ua, implies then, as for g7, that L is trivial. 

Dpe 27. From (3.7), we deduce that r = 2n - 1. We also know that L is of the form 
(3.3) and demanding symmetry under the translations 8, and 8. we obtain that L must be 
of the form 

1 "  
L = - + pU 

2 i=l 

with Ai,  1 Q i < n, and p constant. Imposing now that the scaling 2x8, + (2n - l)u& be 
an infinitesimal divergence symmetry of L we arrive at the equation 

from which we easily deduce that 
p=hi=O 1 Q i < n -  1. 

Therefore 
1 2 L = 5haU: s% U , .  

Symmetry under the remaining generators follows from proposition 3.1. 
The above results can be summarized in the following theorem: 

(3.9) 
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Theorem 3.4. The divergence symmetry algebra of a non-trivial Lagrangian of order n > 1 
is at most (2n + 3)-dimemional. Moreover, if L(x,  U ,  . . . , u.) possesses a (2n + 3)- 
dimensional divergence symmetry algebra then L is divergence equivalent (cf Definition 1.2) 
to the free particle Lagrangian L = U: under an appropriate local change of cooniinates. 

4. Ordinary Werent ia l  equations and evolution equations 

In this section, we shall explore some elementary applications of the above results on 
infinitesimal variational symmetries of Lagrangians to the symmetry analysis of ordinary 
differential equations and evolution equations. For ordinary differntial equations, the basic 
idea is the following. Suppose that the vector field (1.1) is an infinitesimal variational 
sy&netry of the Lagrangian L(x, U,. . . , uJ; equation (1.10) is then satisfied, as a 
consequence. of which we have 

pr") x . L I L ~  = o (4.1) 

which is exactly the condition for the vector field X to be an infinitesimal symmetry of the 
nth-order ordinary differential equation 

L(x ,  U,. . . , u.) = 0. (4.2) 

In other words, we have: 

Proposition 4.1. 
infinitesimal symmetry ofthe ordinary differential equation L = 0. 

Every infvtitesimal variational symmetry of a Lagrangian L is an 

Of course, the converse need not be true: for instance, the variational symmetry algebra 
of the free particle Lagrangian L = U: is (n + 2)-dmensional, whereas the symmetry 
algebra of the equation U, = 0 is (n + 4)-dimensional for n z 2, eight-dimensional for 
n = 2, and even infinite-dimensional for n = 1. From theorem 2.5 we obtain that the 
ordinary differential equations 

914:~s - 4 5 ~ ~ ~ 3 ~ 4  + 4 0 ~ :  = 0 

2QU3 - 3 4  = 0 

(4.3) 

and 

(4.4) 

are symmetric respectively under d(3) and eI(2) 0 eI(2). These are famous examples of 
nth-order ordinary differential equations with an (n + 3)-dimensional symmetry algebra 
given by Lie [I71 (see. also [lS]). (In fact, for both of these equations it can be checked 
that there are no additional infinitesimal symmetries which are not variational symmetries 
of the corresponding Lagrangians.) 

It is a well known fact that a second-order ordinary differential equation with an eight- 
dimensional symmetry algebra is necessariIy equivalent under a local point transformation 
to the free particle equation U, = 0 (see [Z] for a modern proof). For higher-order ordinary 
differential equations, an analogous result has been proved only for the linear case, [IS], 
[191. It is straightforward, however, to generalize the latter result to arbitrary nonlinear 
ordinary differential equations by applying the strategy used to prove theorems 2.5 and 2.6. 
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First of all, by an argument torally analogous to the one used in the proof of proposition 2.3, 
an nth-order ordinary differential equation has at most n linearly independent infinitesimal 
symmetries of the form q(x)a,. By Lie's bound (1.3), the dimension of the symmetry 
algebra of an ordinary differential equation of order n 2 3 is at most n + 4, which is the 
dimension of the symmetry algebra of the free particle equation U, = 0. Therefore, to 
find all ordinary differential equations of order n > 3 with a symmetry algebra of maximal 
dimension n -I- 4, we just have to compute for each algebra gi in table 1 the most general 
nth-order ordinary differential equation symmetric under gi. where the order n satisfies the 
inequalities 

(4.5) 

di = dimgi and, as before, Si is the dimension of the Abelian subalgebra of gi whose 
elements are the vector fields of the form q(x)&.  Equation (4.5) is very restrictive; in 
fact, it is only satisfied by the Lie algebras of types 8 and 28. For the former of these Lie 
algebras, an easy calculation shows that there is no fourth-order ordinary differential equation 
symmetric under it, while for the latter (4.5) implies that n = r - 1, and a straightforward 
computation then proves that the only nth-order ordinary differential equation symmetric 
under gzs with r = n - 1 is the free particle equation U, = 0. We have thus proved the 
following theorem: 

Theorem 4.2. An nth-order ordinary differential equation U, = f (x, U,. . . , U"-,) admits 
a symmetry algebra of maximal dimension n + 4 ifand only if it is locally equivalent to the 
free particle equation U. = 0 under a point narrcformation (1.21). 

max(3, Si) < n < di - 4 

For evolution equations, the idea behind the proof of proposition 4.1 still applies, but 
there is an additional complication. Indeed, suppose that the vector field (1.7) is a time- 
independent time-preserving infinitesimal symmetry of the evolution equation (1.8). The 
necessary and sufficient condition for this can be expressed as 

(Dlv - uzD15)Ix,=f = pr'"' X . f (4.6) 

with 

= a, + (4.7) 

cf 171. Notice that pr(") X in (4.6) can still be computed from (1.13)-(1.14), even if now 
there is an extra variable t ,  because it is acting on a function independent o f t  and of 
derivatives of U with respect to t .  Using (4.7), we can rewrite (4.6) as 

where 

is the divergence of the vector field X with respect to the standard Euclidean measure dx du. 
In other words, we have proved the following proposition: 

Proposition 4.3. r f  a vectorfield (1.1) with zero divergence is an infinitesimal variational 
symmetry of a Lagrangian L(x ,  U,. . . , U"), then it is a time-independent time-preserving 
infinitesimal symmetry of the evolution equation ut = L(x,  U ,  . . . ,U"). 
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For example, since all the vector fields in the Lie algebra g5 have zero divergence, from 
the previous proposition and theorem 2.6 it follows that this algebra is a subalgebra of the 
Lie algebra of time-independent time-preserving infinitesimal symmetries of the evolution 
equation 

UI = (uxx)”3. (4.10) 

It is important to bear in mind, however, that the connection established by proposition 
4.3 between the infinitesimal variational symmetries of a Lagrangian L and the infinitesimal 
symmetries of its associated evolution equation ut = L is highly coordinate-dependent, in 
view of the quite different transformation properties of both objects. On the other hand, the 
analogous connection between L and the ordinary differential equation L = 0 is intrinsic, 
by equation (1.22). 

In general, it would be desirable to remove the restriction that X have zero divergence 
in proposition 4.3. In particular, we would like to relate each of the maximally symmetric 
Lagrangians of order n 2 2 found in section 2 to an evolution equation, so that the 
full variational symmetry algebra of each of these Lagrangians be a Lie algebra of time- 
independent timepreserving infinitesimal symmetries of the associated evolution equation. 
More precisely, let g be a Lie algebra of vector fields in R2; let 

E = U CW(J”,  R) 
“>O 

and let L[g] denote the vector space of all Lagrangians admitting g as a Lie algebra 
of variational symmetries. M a t  we want is to find a (not necessarily linear) functional 
3 : L[g] -+ E such that for every L E L[g] ,  the evolution equation ut = f l L ]  admits g 
as a Lie algebra of time-independent time-preserving infinitesimal symmetries. Proposition 
4.3 tells us that if g is a subalgebra of the (infinite-dimensional) Lie algebra of vector fields 
with zero divergence then we can simply take as 3 the canonical injection L [ g ]  -+ E, but 
this choice will not work in general. Instead, we shall try the simple ansatz 

3 [ L ]  = G(x, U ,  . . . , ur)F(L)  (4.11) 

where the positive integer k and the functions G : J‘ -+ R, F : R + R are fixed (i.e. they 
depend only on g. but not on L E L[g]). Of course, in principle there is no guarantee that 
such an ansatz will be appropriate for an arbitrary Lie algebra g. but we shall now show 
that if g is any of the variational symmetry algebras of maximal dimension of theorem 2.5, 
the functional (4.11) does in fact do the job. 

Indeed, suppose that the evolution equation 

U I  = G . F ( L )  (4.12) 

admits the vector field X given by (1.1) as an infinitesimal symmetry, whenever X is an 
infinitesimal variational symmetry of L. Using (4.8) and (MO), we immediately arrive at 
the equation 

F’ 
pdk) X . logG - L-D,C = vu -&,U,. 

F 
(4.13) 

The structure of this equation, which must be valid for all X E g and all L E L[g] for a 
given Lie algebra g, suggests that we set 

F’ 
F 

L - = c  
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or equivalently 

F ( L )  = Lc (4.14) 

where c is a constant (depending on 8). Equation (4.13) then simplifies to 

pr(k) X . log G = CO.& + vu - &ux (4.15) 

which is an equation in G only. 
The Lie algebras gs and gI6 both contain the vector fields a,, a,, and xa, forua, for 

arbitrary or. Demanding that (4.15) be satisfied by the latter vector fields we deduce that G 
is a function of the derivatives (u1. u2 , .  . . , U k )  only, satisfying 

~ ( o r - i ) u i ( l o g G ) i = c + u  VordruEae. (4.16) 

Again, the simplest way of satisfying (4.16) is by assuming that G is a function of one of 
the derivatives of U only, that is G = G(uk). in that case, (4.16) immediately yields 

i=l 

G=Uk c=-k.  (4.17) 

Thus, for both as and g16 OUT ansatz for the associated evolution equation is of the form 

Ur = UkL-' ' (4.18) 

where the positive integer k has yet to be determined. For gI6, imposing that the vector 
field x2a, be an infinitesimal symmetry of (4.18) we get, using equation (4.15), 

(4.19) uk-I 

uk 
k(k - 1)- 0 

from which we deduce that k = 1 for the Lie algebra gI6. For this value of k, equation 
(4.15) is automatically satisfied by the remaining generator U%.. This proves the following 
proposition: 

Proposition 4.4. 
variational symmetries, then the evolution equation 

lfthe Lagrangian L admits the algebra g16 as a Lie algebra of infntitesimal 

U* = u,L-l (4.20) 

is symmetric under G , ~ .  

For the Lie algebra gs, syhmehy of (4.18) under the generator xa, implies, by (4.15) 
and (4.17), that k > 1. Imposing now that (4.15) be satisfied by the vectorfieldn2a,+xua, 
we get 

Uk--1 

Ut 
k(2 - k)- = 0 (4.21) 

which implies that k = 2 for this algebra. It is then straightforward to check that the 
remaining generators satisfy equation (4.15). Hence we have: 
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Proposition 4.5. Ifthe Lie algebra gg is a Lie algebra of infinitesimal variational symmetries 
for the Lagrangian L, then the evolution eqwrtion 

ut = u,L-Z (4.22) 

is symmetric under gs. 

Finally, consider the Lie algebra gn, with r = n - 1. Symmetry under the vector fields 
8, and xi&, 0 < i < n - 1, implies that G is independent of x ,  U and derivatives of U 
of order less than or equal to n - 1. If we assume, for simplicity, that G is a function of 
U, only, equation (4.15) is the same for the remaining generators 2x8, + (n - l)u8, and 
xz8, + (n - l)xua., and implies that 

for arbitrary c. Hence: 

Proposition 4.6., Let g denote the algebra g2., with r = n - 1. Ifa Lagrangian L admits g as 
a Lie algebra of infutitesimal variationai symmetries, then g is a Lie algebra of infinitesimal 
symmetries for the evolution equation 

(4.23) 

for all c E B. 

Applying propositions 4.4-4.6 to the maximally symmetric Lagrangians listed in 
theorem 2.5 and using (4.10), we obtain the following list of nth-order evolution 
equations possessing an (n+3)-dimensional Lie algebra of time-independent time-preserving 
infinitesimal symmetries,.as in table 4. 

Table 4. 
infinitesimal poini symmetries of maximal dimension. 

Evolution equations with a Lie algebra of time-independent time-preserving 

Enuation AIeebra SUUcnUe 

By the result of Sokolov quoted in the introduction, for each of these evolution equations 
the Lie algebra of vector fields listed next to it in the previous table is exactly equal to 
its Lie algebra of time-independent time-preserving infinitesimal symmetries. The latter 
equations thus possess a Lie algebra of time-independent time-preserving infinitesimal 
(contact) symmetries of maximal dimension. In fact, the above table reproduces the list of 
equivalence classes (under contact transformations) of evolution equations with a maximal 



1232 A Gonzrflez-Mpez 

Lie algebra .of timeindependent time-preserving infinitesimal contact symmetries found in 
[6, pp 172-31, see also [ZO], with the obvious exception of the equation 

U* = ui(lOu:u7 - ~ O U : U ~ U ~  -49~:~:  + Z S O U ~ U $ L ~  - 175~:)-~'~ 

the latter equation has proper infinitesimal contact symmetries, not arising-as for the other 
equations in our table-as the first prolongation of infinitesimal point symmetries. Notice, 
finally, that equation (4.10) is not listed in [6], since it is equivalent under the contact 
transformation 

- 
t = -t f = U;' ii = u;'u - x 

to iii = (ii&'/3, which is the last equation in the previous table for n = 2. We have kept 
both equations in our table, since they are inequivalent under point transformations; indeed, 
the Lie algebras gs and g2, with r = 1, though algebraically isomorphic, are not equivalent 
under point Bansfonnations (the former is primitive and the latter is not, cf [SI). 
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