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Symmetry bounds of variational problenis

Arntemio Gonzalez-Liépezt
Departamento de Fisica Teérica H, Universidad Complutense, 28040 Madrid, Spain

Received 10 Angust 1993

Abstract. Sharp upper bounds on the dimension of the Lie algebra of infinitesimal variational
and divergence point symmetries of a non-trivial Lagrangian L(x, u, &, ..., 6™ (x, u € B) of
arbitrary order n are found, For any given order, all Lagrangians whose Lie algebra of variational
or of divergence symmetries is of maximal dimension are completely classified, modulo local
point transformations. It is shown, in particular, that for n > 2 the algebra of variational
symmetries of the generalized free particle Lagrangian ()2 is nor of maximal dimension,
whereas when n = I there are several Lagrangians admitting a variational symmetry algebra of
maximal dimension and generating differential equations different from the free particle equation.
A connection between variational problems on the line and scalar evolution equations in one
time and one space variables is also established, showing that Lagrangians with a variational
symmetry algebra of maximal dimension correspond to evolution equations with a maximal Lie
algebra of time-preserving time-indeperdant infinitesimal point symmetries. The technique used
in the proof of the above results is applied to give a simple proof of the fact that an ordinary
differential equation of order n > 2 has a symmetry algebra of maximal dimension if and only
if it is locally equivalent under a point transforraation to the generalized free particle equation
u® =0,

1. Introduction

One of the first results obtained by Sophus Lie in his development of group theory is the
fact that the Lie algebra of vector fields )

X =E(x, u)dy + n(x, u)d, (1.5

generating point symmetry transformations (symmetry algebra for short) of an ordinary
differential equation

w® = fle,u, ... 0 (1.2)

of order &£ > 1, is finite-dimensional, provided that the components of the vector field X are
real analytic. In fact, Lie [1] showed that the dimension of this algebra is bounded above
by the integers

{8 if k=12 (13)

k-4 if £ > 2.

(This result has been extended recently to the case X € C*, cf [2].) Moreover, Lie also
proved that these upper bounds are sharp, i.e. for every k > 1 there is a kth-order differential
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1206 A Gonzdlez-Lépez

equation (1.2) whose symmetry algebra has dimension exactly equal to (1.3). The simplest
example of an equation having such a property is given for all k 2 2 by

u® =0 (14)

which we shall call the free particle equation by analogy with the & = 2 case.

The above results have been partially generalized to systems of differential equations in
normal form, i.e. such that each equation in the system can be solved for the highest-order
derivative appearing in it. More precisely, it has been shown in [3] that the Lie algebra of
{real analytic) infinitesimal point symmetries of a system of ordinary differential equations
in normal form containing no first-order equations is always finite-dimensional. Moreover,
in the case of a normal system of m equations of order &

u,g‘)=ﬁ(x,u;,...,u,,,,...,ugk'n,...,u,(,f'l)) i=1,2,....m (15

an upper bound on the dimension of the symmetry algebra has also been found in [3] and
later refined in [4] (see also [5]), namely
2 =
{m +4m+3 fe=2 (L6

mr+mk+1)+2 if k> 2.

However, this upper bound is known to be sharp only for £ = 2, whea it is achieved by the
m-dimensional free particle equation

u! =0 i=12...,m.

The symmetry algebra of the m-dimensional generalized free particle equation of order
k>2

ugk}——-() o i=12,...,m

has also been computed in [3], but its dimension m? + km + 3 is strictly less than (1.6)
when k > 2. Therefore, for £ > 2 it is not known at present whether or not, for a given
order k, the m-dimensional free particle equation of order & is the m-dimensional system
with the largest symmetry algebra.

Similar results for time-independent time-preserving symmetries of evolution equations
were recently obtained by Sokolov, [6]. Indeed, the Lie algebra of smooth (but not
necessarily real analytic) infinitesimal point symmetries of the form

0-8 + &, )3 +n{x, ¥)3, (1.7
of an evolution equation

o
Ix!

vy = Flx,u, Uy, ..., Hy) Uy = (1.8)
is of n+ 3 dimension at most when # > 1, and this bound is optimal. (Actually, Sokolov's
result is slightly more general, since it applies to contact symmetries as well, cf [6].)
Surprisingly, the analogous problems for ordinary differential equations (1.2) arising as
Euler-Lagrange equations of a Lagrangian L{x, u, &/, ..., u") have received little attention
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in the literature, In this context, the ‘natural’ point symmetry transformations are of two
types, variational and divergence, whose definition we shall now briefly recall.
Point transformations that preserve the action

S.Uf1= f LGk, FO P, ey FOG) dx (19)

xp

associated to the Lagrangian L are called variational symumetries of L. A vector field
(1.1) is an infinitesimal variational symmetry of L if it generates a one-parameter group of
variational symmetries of L. The necessary and sufficient condition for a vector field (1.1)
to be an infinitesimal variational symmetry of a Lagrangian L is well known, namely

prX - L+ LD.E =0. (1.10)

The notation used in this formula is that of reference [7], i.e. D, is the total derivative
operator defined by the formally infinite sum

D ——a-+iu- i {1.11)
x = ax L i+1 3u; 7 .
with
w=u® (112)
and
pr™X = X+Zn:n"-§- (1.13)
Bu,-

i=1

is the nth prolongation of the vector field X, whose components n(x, u,...,u;) are given
by the vsual formulas

n' = Dy(n — ur€) + 1§ i=1,2,.... - 14

Divergence symmetries are usually defined directly at the infinitesimal level, cf [7], by
a natural generalization of (1.10). More precisely, a vector field (1.1} is an infinitesimal

divergence symmetry of a Lagrangian L(x, u, ..., u,) if it satisfies
pX L+ LD.E =D, f ‘ (1.15)
for some function f(x,u,...,¥,.1). Roughly speakiné, this méans that the one-parameter

group generated by (1.1) preserves the action (1.9) up to the addition of a boundary term.
The analytic characterizations (1.10) and (1.15) of the infinitesimal variational and
divergence symmetries of a Lagrangian L are easy to understand if we consider the standard
contact structure on the jet bundle J*{R, R) = J" with local coordinates (%, u, #1, ..., 4n).
To this end, we introduce the usual basis of contact 1-forms C, = {61, ..., 8"}, defined by

g’ ey —u; dy i=12,...,n (1.16)
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The necessary and sufficient condition (1.10) for the vector field (1.1) to be an infinitesimal
variational symumetry of the Lagrangian L(x,u,...,u,) is then simply expressed by the
equation

LomX(Ldx) =0modC, (1.17)
whereas infinitesimal divergence symmetries of L satisfy
Loy X(Ldx) =df modC, (1.18)

with Lyo denoting the Lie derivative of the differential form w along the vector field V.
The EulerLagrange equation

: AL
2 (~Dfs= =0 (1.19)
i=0

generated by a Lagrangian L(x, u,...,u,) can always be locally expressed as a normal
ordinary differential equation of order 2r for an appropriate r, with 0 € r < n. For
example, if L is non-degenerate, ie. if 3°L/8u2 does not vanish identically, then the
Buler-Lagrange equation is 2 normal differential equation of order 2 on a certain open
subset, and therefore r = n in this case. On the opposite end, when L can be written as

L=Lox &)+ D:f (1.20)

for some function f : J* ! — R, then r = 0, since the Euler-Lagrange equation of L
reduces to the trivial constraint -

-aﬁ(x, )y =0,
du
We shali cail a Lagrangian of the form (1.20) a trivial Lagrangian; a particular instance
of such trivial Lagrangians are aull Lagrangians, of the foom L = D.f. In this paper
we shall deal exclusively with non-trivial Lagrangians, whose Euler-Lagrange equations
are genuine differential equations. If L is a non-trivial C* Lagrangian, its Lie algebras
of C*™ infinitesimal variational and divergence symmetries need not be finite-dimensional.
For instance, if I vanishes for (x, &) outside an open subset M then any C*° vector field
vanishing on an open subset strictly containing M is an infinitesimal variational symmetry
of L, by (1.10) and the prolongation fortnula (1.14). On the other hand, if L{x, k, ..., 4y)
is C* (or even merely of class C**1, so that its Euler-Lagrange equation (1.19) is well
defined) and non-trivial, then its Lie algebras of real anaiytic infinitesimal variational and
divergence symemtries are finite-dimensional. Indeed, the Euler-Lagrange equation of L
is a normal ordinary differential equation on some open subset of J* for appropriate r,
and therefore its symmetry algebra g is a finite-dimensional Lie algebra of vector fields
defined on some open subset M C R?. Hence the restriction to M of g%-—the Lie algebra
of real anaiytic infinitesimal divergence symmetries of L—is finite-dimensional, being a
subalgebra of g. That is easily seen to imply that g% itself is finite-dimensional (and
dim g% < dim g), using the well known result that a real analytic function vanishing on a
non-empty open subset must be identically zero on its whole domain. We shall therefore
assume from now on that all Lagrangians are non-trivial and of class €%, and we shall
only be interested in real analytic infinitesimal variational or divergence symmetries thereof,
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Under these assumptions, both the variational and the divergence symmetry algebras are
then finite-dimensional.

Once the finite dimension of the Lie algebras of variational and of divergence symmetries
of any non-trivial Lagrangian has been established (under the above hypotheses), we are
faced with problems totally analogous to those considered above for ordinary differential
equations in normal form and for evolution equations. First of all, we would like to compute
a sharp upper bound on the dimension of the variational and divergence symmetry algebras
of any Lagrangian L(x,u,...,u,) as a function of its order # > 1. Once this is done,
it is also of interest to classify all Lagrangians of a given order n whose Lie algebra of
variational or of divergence symmetries is of maximal dimension for that order. These are
precisely the two main goals we have set outselves in this paper.

To perform a classification of maximally symmetric Lagrangians, an appropriate
equivalence relation has to be specified. However, as we shall discuss next, it is natural to
use slightly different equivalence relations in the varjational and in the divergence cases.
To begin with, if we perform a local change of variables

(. 1) b (X, 1) = (p(x, ), ¥ix, u)) = ®(x, 1) (1.21)

it is well known that a Lagrangian L(x, u, ..., u,) is expressed in the new local coordinates
(x,d,...,d,) of J* by the function L(X, &, ..., i) related to L by

L=(Lop™ ®)D,x ) : (1.22)

where the natural prolongation pr™ @ of (1.21) to J* is given by

o™ S u, . ) = Fally ..., fin) (1.23)
with '
1 i '
;= ( Dx) ¥ 1<i<n. (1.24)
Dyo

It is clear that (1.22) preserves the variational Symmetry algebra and the EulerLagrange
equation, by the well known invariance of these concepts under point transformations, cf
[7]. We therefore make the following definition:

Definition 1.1. Two Lagrangians L(x,u,...,u,) and L(%, &, ...,#,) are eguivalent if
there is a change of variables (1.21) and a non-zero constant ¢ such that L and L are related

by
L =c(L opr™ @)D, . ) . (1.25)

(Multiplication by a constant factor obviously does not change the variational symmetry
algebra nor the Euler-Lagrange equation, and its inclusion in the previous definition
is desirable in that it allows us to choose any convenient normalizaiton for L in each
equivalence class.)

It is this notion of equivalence that we shall use to classify all Lagrangians possessing
a Lie algebra of infinitesimal variational symmetries of maximal dimension. On the other
hand, for the divergence symmetry classification it is more natural to use the following
generalization of (1.23):
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Definition 1.2. Two Lagrangians L(x,u,...,u,) and L(%,4&,...,0,) are divergence
equivalent if they are equivalent up to the total derivative of a function f : J*~! = R, i.e.
if they satisfy

L=c(Lop™ ®)DE+D;- Flt ity..., Unoy). (1.26)

Notice that (1.26) preserves the divergence symmetry algebra (and the Euler-Lagrange
equation), but in general it maps infinitesimal variational symmetries of L into infinitesimal
divergence symmetries of L. That is the reason why we cannot use the more general
equivalence relation (1.26) for both the variational and the divergence classification.

The paper is organized as follows. In section 2, we shall study the variational symmetry
algebra of non-trivial Lagrangians of order n, showing that its dimension is at most n + 3,
if n 2 2, or 3, if n = 1. We shall also prove that this upper bound is sharp, and we shall
locally classify all Lagrangians with a variational symmetry algebra of maximal dimension.
These results are a bit surprising, since the dimension of the symmetry algebra of the free
particle Lagrangion - ‘

L=ul {1.27)

whose Euler-Lagrange equation is the free particle equation (1.4) of order 2n, is only n+2
when n 2 2. Thus, contrary to what the case of scalar ordinary differential equations might
suggest, the free particle Lagrangian does not have a maximal Lie algebra of infinitesimal
variational symmetries if » 2> 2. If n = 1, the free particle Lagrangian does admit a
variational symmetry algebra of maximat dimension, but as we shall see there are several
other inequivalent first-order Lagrangians with this property. Section 3 is devoted to the
same problems for infinitesimal divergence symmetries. We shall show that the divergence
symmetry algebra of a non-trivial Lagrangian of order # is of dimension not greater than
2n+-3, and that any Lagrangian whose divergence symmetry algebra is (2n +3)-dimensional
is locally divergence equivalent to the free particle Lagrangian (1.27). Finally, in section
4 we shall briefly explore some applications of the previous results to ordinary differential
equations and evolution equations.

2. Variational symmetries

In this section we study the dimension of the Lie algebra of (real analytic) infinitesimal
variational symumetries of a non-trivial Lagrangian L(x, ¢, ..., u4,) of order n > 1. Since
the free particle Lagrangian (1.27) generates the free particle equation (1.4) (with & = 2n),
which has an infinitesimal symmetry algebra of maximal dimension, it would be natural to
conjecture that (1.27) admits a variational symmetry algebra of maximal dimension. We
shall see below that this supposition is false for n 2 2. In order to do so, we need to
compute the variational symmetry algebra of the Lagrangian (1.27). This can be done by
finding the general solution of the variational symmetry condition (1.10), or even more
easily (since we know that the variational symmetry algebra is always a subalgebra of the
symmetry algebra of the Euler-Lagrange equation), by starting with an arbitrary vector
field in the symmetry algebra of equation (1.4} with £ = 2r, and imposing that it satisfies
condition (1.10). The symmetry algebrz of the free particle equation has been computed by
Lie himself, [1] (see also [3]). When k£ = 2, the symmetry algebra of (1.4) is the eighth
Lie algebra in the classification of [8] (see table 1), spanned by the vector fields

2, dy, xdy X8, udy ud, x28, + xud, xudy + u*d,.
(2.1)
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This is the well known Lie algebra of the projective group SL(3), which acts locally on R?
via linear fractional transformations:

a b c
(x,u)ﬁ(ax-%bu_-i—c:,dx-l—eu-i-jf) detld e fl=1.
gx+hutj gxthutj g b j

-On the other hand, when & > 3 a basis of the symmetry algebra of (1.4) consists of the
k + 4 vector fields

9 By x0; x8, 13, x23, + (k — Dxud, x'9,
2€igk-1. (2.2)

The latter Lie algebra, which is isomorphic to a semidirect product of gi(2) with R¥, is the
28th Lie algebra in the classification [8], with r = k — 1. A straightforward calculation
using (2.1) and (2.2) then yields the following proposition:

Table 1. Finite-dimensional Lie algebras of vector fields in R?. In this table ), stands for
the unigne two-dimensional solvable non-Abelian Lie algebra, In cases 20-28 we assume that
r 2 1, in cases 20-21 the functions &, 1 < { < r, are linearly independent, and in cases 22 and
23 the functions n;(x), 1 < i < r, form a basis of solutions for a linear homogeneous rth-order
ordinary differential equation with constant coefficients.

Generators Structure
17 {8, 8y, oy + udy) + w8, — x8,} (@ =0) R x k2
2 {02, X8y + 18y, (6% — 0¥, + 2x08,) sl
3 {ude — x8,, (1 4+ x2 — 028, + 208y, 2kud;, + (1412 - x5} 50(3) )
4 {8, 8y, X3y + udy, udy — x3,} B2 x B2
5 §8,, 8, X0 — udy, ud;, x8,} sl(2) x B2
6 {8y, By, X8, udy, X8y, ud,) gl2) x B2
7 {Bes By, X8z + Uy, 4By — %8y, (62 — 4B, + Zxudy, 2xudy, + (u* — x2)3,} 503, 1)
g (B, B, X8y, Wy, X3y, 48y, X208y + xutdy, xudy + 128} ’ s13)
9 {8:} R
10 {8e, x8;) B,
11 B, x8s, x%0:} sl
12 {8y, 8y, x9; + and,} O<lelsD) R x R?
13 {By, 8, 8y, uil} B, @b,
14 1%, 3u,x3x,x23;} E[(Z)
15 {axnaun-xax;“au;xzax} 5[(2)@b2
16 {8, B, xBy, 28y, x20;, uZ0,} ' sl @ sl
& 50(2,2)
17 {3 + By, 20c + 28y, X280 + 528,) sl
18 {8, 2x8, + 2By, x20; 4 xud,) sl
19 {8,, x8y, udy. 28 + xud,} gl
20 {84s E1(x)8ur . . Er(X)Bu} Er+t
21 {aln uau}'fl(x)aus"'igf(x)au} RN.IRr+[
2 {Be, M1 (X)Bus - -+ » T (X)BL) Rx R
23 {Be, w8y, 71 (0)By, - -+, Nr ()0} RIx R"
24 {8y, By, £y + By, X8y, ..., X704} B, x RO
25 {3y, By X8y, oo s X718y, X8 + (P + 278, ) - Rx EBxR)
26 {Bx, B, X3, X8y, 20y, x50y, ..., X704} h, & R} x BFH
27 {8, 8y, 20 + Fudy, X8y, X280y + rxudy, 220, ..., % 0} sl(2) x R

28 {0, Do X, X0, By, %20y + rxaady, x28y, ..., x" B} gl2) x R+
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Proposition-2.1. For all n 2 1, the Lie algebra of infinitesimal variational symmetries of
the free particle Lagrangian L = u? is spanned by the n + 2 vector fields

3, B 2%, + (Pn — 1ud, xia, 1<i<n—1. (2.3)

In the classification of [8], (2.3) is the 24th Lie algebra (with ¢ =n — % and r =n—1)
when n 2 2, and the fourth one (with ¢ = %)A when n = 1. To show that the variational
- symmetry algebra (2.3) of the free particle Lagrangian is not of maximal dimension when
n 2z 2, we are going to construct a Lagrangian L(x, u, ..., #,} whose variational symmetry
algebra is of dimension #+-3 if n 2> 2. To that end, we just consider a slight generalization
of (1.27), namely

L=u 2.4)
For the latter Lagrangian, the variational symmetry condition (1.10) reduces to
an®™ + u,D. £ =0. 2.5)

From the prolongation formula (1.14) we easily see that when n > 2 (2.5) is equivalent to
the equations

7™ gm0 =0 (2.6)
and ’
an, + (1 —na)g; =[1 —(n+ Deals, =0. 2.7

Equation (2.6) is just the condition for the vector field (1.1) to be an infinitesimal symmetry
of the free particle equation of order #». Thus, the solutions of (2.5) are just the linear
combinations of the vector fields (2.2) which satisfy the additional conditions (2.7). 1t is
now a straightforward matter to check that the general solution of (2.5) depends on # 4+ 2
arbitrary parameters, except in the following two cases: for ¢ = 2/(n + 1) and arbitrary
nz2,andforn=2and o = -;: In the former case, the solution of (2.5) is

£ = Pyx) n =5 — DuPy(x) + Qp1(x) (2.8)

with Py and Q,—1 polynomials of degree 2 and n—1 in x. In the exceptional case r = 2 and
o= %, the general solution of (2.5) depends on 5 = n 4 3 parameters, so it just provides
an additional example of a second-order Lagrangian with a five-dimensional variational
symmetry algebra, inequivalent to (2.8) with n = 2. In particular, we have proved the
following proposition:

Proposition 2.2. For every n = 2, the Lie algebra of infinitesimal variational symmetries
of the Lagrangian

L = /D (2.9}
is spanned by the n -+ 3 vector fields

3. B 2x8; + (n — 1ud, 128, + (n — Dxud, x'9,
1<i<n—-1 (2.10)
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The (n + 3)-dimensional Lie algebra (2.10) is the 27th Lie algebra in the classification [8],
with r = n — 1. Algebraically, it is a semidirect product of sl(2) with R".

The previous proposition shows that the free particle Lagrangian does not have a
variational symmetry algebra of maximal dimension if r > 2. The question is now whether
or not the variational symmetry algebra (2.10) of the Lagrangian (2.4) is of maximal
dimension, or in other words whether or not the dimension of the variational symmetry
algebra of any Lagrangian of order »n 2 2 cannot be greater than n + 3. We shall prove
below that this is indeed the case. We shall also deal with the # = 1 case, showing
that the first-order free particle Lagrangian does have a variational symmetry algebra of
maximal dimension, although it shares this property with several other inequivalent first-
order Lagrangians.

To prove these results, we shall use the following simple strategy. Let p** be the Lie
algebra of real analytic infinitesimal variational symmetries of a Lagrangian L(x, «, ..., u,).
From [8], we know that there is an open subset M C R? and appropriate coordinates on M
- such that g¥*¥|,s, the restriction to M of the vector fields in g**, is one of the 28 types of
Lie algebras listed in table 1. Furthermore, since the vector flelds in g"* are real analytic,
it is easy to show that g""|s and g'* have the same dimension (and they are therefore
isomorphic). Hence, to find an upper bound on dim g** we shall simply go through table 1,
computing for each Lie algebra g; in the table the most general Lagrangian of order n
admitting g; as a Lie algebra of infinitesimal variational symmetries. When performing this
calculation, it is convenient to deal separately with the cases n = 2 and n = 1. Indeed, if
n 2 2 we can assume that the dimension d; of g; is not greater than »n 43, or equivalently
that » satisfies

2<¢n<d -3 (2.11)

since for every n = 2 the variational symmetry algebra (2.10) of the Lagrangian (2.9) is
(n-+3)-dimensional. (Were we only interested in finding an upper bound on the dimension of
the variational symmetry algebra, without classifying all Lagrangians admitting a variational
symmetry algebra of maximal dimension, we could replace the second inequality in (2.11)
by a strict inequality.) On the other hand, in the case of first-order Lagrangians we only
need to work with Lie algebras of dimension greater than or equal to three, that is

d 23 (n=1) (2.12)

since the variational symmetry algebra of the first-order free partlcle Lagrangian is three-
dimensicnal, cf proposition 2.1.

‘We can further strengthen the first inequality in (2.11), and reduce the number of Lie
algebras that we have to consider in the first-order case, by making use of the following
proposition:

Proposition 2.3. A non-trivial Lagrangian L(x,u,...,u,) has at most n lmearly
independent infinitesimal variational symmetries of the farm n(x)a,.

Proof. Indeed, if the n+1 vector fields n;(x)d,, 1 € { £ n+1, are infinitesimal variational
symmetries of L{x, x, ..., #;), by equations (1.10) and (1.13)~(1.14) we must have

mlo+nLi+- +n"ML, =0 1<ig<n+1
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where

AL
Li=—.- - — ‘ 2,13
' (2.13)

Let

W, - ..o nst] = det(n™) 1ginsn @2.14)
0<j<n

denote the Wronskian of the functions n;, 1 € i < n+1;if
M={xeR|Wny,..., gus1](x) 5 0}
then
Li(x,t6,...,un} =0 0<gi<n (2.15)

forallx € M and all 4, uy, ..., u,. By the analyticity of the functions »;, if M is not empty
then it is open and dense in R, in which case (2.15) must hold everywhere by continuity.
This would imply that L is a function of x only, contradicting the non-triviality assumption.
Hence we must have

Wing, ... a1l =0
everywhere. The following lemina then implies that 1y, ..., fz41 are linearly dependent:

Lemma2.4.. Lern; : R — R bereal analyticfor1 <i < k. If the Wronskian W{ny, ..., nl
vanishes for all x € R, then 0. ..., ng are linearly dependent over the reals.

Proof. 'The proof is an easy induction argument. For &k = 1, there is nothing to prove.
Assuming now that the lemma holds for all positive integers & < n, we shall prove it for
k=n-41.

If Wni1,...,n,] vanishes identically, w& are done by the induction hypothesis.
Otherwise the analyticity of the functions #»; implies that the set

M={xeR|Wn,...,n.){x) 0} (2.16)

is open and dense. From the vanishing of Wiy, ..., nes1] it immediately follows that
M, .., Net1 Satisfy the equation

oM e Mg
W o ..
LT =0 @217
o) ngﬂ) . ng)

which by (2.16) is a nth-order linear differential equation on the open set M. By the
elementary theory of linear differential equations, the # + 1 functions i; must be linearly
dependent on M, and since this set is dense in R the lemma follows.

Remark. Although elementary, this lemma is not totally trivial. For example, it is not true
if the functions »; are merely C*,
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Let §; denote the dimension of the Abelian subalgebra of g; whose elements are the
vector fields of the form n(x)3, belonging to g;. From proposition 2.3, it follows that if
g; is a Lie algebra of infinitesimal variational symmetries of a Lagrangian L{x, u, ..., iy)
then §; < n. Therefore, we can replace (2.11) by

max(2, 8) < n < dy - 3. (2.18)

Similarly, when dealing with first-order Lagrangians we need only consider those Lie
algebras in table 1 satisfying

<1 ad 4323 (2.19)

We shall now perform the calculation described above, computing for each of the 28
Lie algebras of real analytic vector fields g, listed in table 1, the most general Lagrangian
admitting g; as a Lie algebra of variational symmetries. As explainred before, we treat
separately the cases # 2 2 and n = 1.

CaselL n>2.
It turns out that conditions (2.18) are very restrictive, and in fact allow us to completely
eliminate many of the 28 types of Lie algebras in table 1 from consideration. Indeed, from

(2.18) it follows that any Lie algebra g; such that
dp < max(5, 8 +3) , - (2.20)

can be safely excluded from our calculation. Thus, the only Lie algebras we have to consider
in this case are those of types 5-8, 15-16 and 26-28.

Type 5. In this case, n = 2 from (2.18), and an elementary calculation shows that
the only second-order Lagrangian admitting this algebra as a Lie algebra of infinitesimal
variational symmetries is

= (z)' . — A (2.21)

Type 6. Fixst of all, we can take # = 3 by (2.18). Symmetry under the generators d,
d, and xd, implies that L is a function of u» and u3 only. Finally, imposing that ud,, %9,
and x@; be infinitesimal variational symmetries of L(u2, #3) we easily obiain the equations

ttals + sl =0
(requs + 3u%)L3 =L
2uqlo + 33l =

from which it immediately follows that L must vanish,

Type 7. Again, (2.18) implies that we can take # = 3, and symmetry under the
generators d; and 3, means that L is a function of the variables (11, w3, #3). Demanding
that the generators xd; +u 8y, ud, —x8, and (x2 —u2)d, + 2xud, be infinitesimal variational
symmetries of L, after some elementary manipulations we arrive at the system

a+ u%)Ll + 2uqua Lo + Quius + 3u§)L3 =
UaLa+2ualy =L (2.22)
(1+ ul)ng + 6uyuyis =0.
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Solving the last two equations we get
L= AGu'? (2.23)

with v = 3uu2 — (1 + u3)us.
Substituting (2.23) into the first equation (2.22) yields

21+ uDA + 20 + 3ud@d ~ v JA =0

which implies that A, and hence L, must vanish.

Type 8. As before, from (2.18) and the presence of the generators 3,, 8, and x3, in gg
we deduce that L is a function L{xs,..., us). Combining the equations obtained requiring
that the generators ud,, x3;, x29, -~ xu8, and ud, be infinitesimal variational symmetries
of L it is straightforward to obtain the following system of partial differential equations:

My Uz Ua  Us L, 0
0 us 2us 3us Ly | _1L
0 3u2 8u3 15&4 L4 1o (224)
0 0 1z Sus Ls Y
The general solution of this system is easily found to be
— L 0,20 _ 331/3
L= ;—(9u2u5 45uatstiq + 40u3z) (2.25)
2 .

where ¢ is an arbitrary constant. The Lagrangian (2.25) automatically admits the remaining
generator xu 3, + ©29, as an infinitesimal variational symmetry, since we have

(48, — x8,, X280, + xud,] = xud, + u*d,.

Type 15. An easy calculation along the lines of that for the algebra gg shows that no
non-trivial Lagrangian satisfying conditions (2.18) admits this algebra as a Lie algebra of
infinitesimal variational symmetries.

Type 16. As above, conditions (2.18) and symmetry under the franslations &, and 3,
allow us to deduce that L is a function L(iy, #2, u3). A calculation totally analogous to
that we just performed for gg then shows that the most general Lagrangian of the above
form admitting this algebra as a Lie algebra of variational symmetries is

L= ;f—|2u1u3 — 322 (2.26)
1

with ¢ an arbitrary constant. ‘

Types 26 and 28. In both cases, it is easy to show that there are no non-trivial
Lagrangians satisfying the inequalities (2.18) which admit either of these algebras as Lie
algebras of infinitesimal variational symmetries. For example, for gz conditions (2.18) and
symmetry under the generators 8, and x8,, 0 < i < r, imply that L is a function of
and #,42 only. Symmetry under the scalings x9, and ud, is easily seen to imply that

tpsalpyg =L

from which it follows that L is of the form

Bred
L = Alurp)drsr = Dy f A(s) ds.
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Hence L is 2 trivial Lagrangian.

Tpe 27. Inthis case, dyy = r+4 and 327 = r + 1. 50 12 = r+ 1 by (2.18). Furthermore,
symmetry under the generators 8, and x’8,, 0 < i < r, implies in the usual fashion that L
is a function of u, only. Symmetry under the scaling 2xd, + rud, yields

L = cu/ @D (2.27)

with ¢ constant. Finally, it is immediate to check that the latter Lagrangian admits the
remaining generator x%8, -+ rxud, as an infinitesimal symmetry. This is in agreement with
the results of proposition 2.2.

Remark. Strictly speaking, the above calculations only show that the Lagrangians (2.21),
(2.25), (2.26) and (2.27) admit, respectively, the Lie algebras gs, gs, g and gy as
subalgebras of their variational symmetry algebras. For the Lagrangians (2.21}) and (2.27),
the calculation preceding proposition 2.2 shows that gs and gy are actually equal to the
variational symmetry algebras of these Lagrangians. For the remaining two Lagrangians,
the same result can be easily deduced from the fact that we have not found any Lie algebra
g of vector fields on R? with the property that there exists a Lagrangian of order n with
2 € n € dim g — 4 admitting g as a Lie algebra of variational symmetries.

The results of the above calculation can be conveniently summarized in the following
theorem:

Theorem 2.5. If L is a non-trivial Lagrangian of order n 2 2, the dimension of its
variational symmetry algebra g'* is at most n + 3. Moreover, if dimg"™ is exactly egual
to n+ 3 then L is equivalent, under an appropriate local change of variables {cf Definition
1.1), to one of the four Lagrangians listed in the following table 2:

Table 2, Lagrangians of order = 2 possessing a variational symmetry algebra of maximal

dimension.
Lagrangian Algebra Structure
P Porlr=n-— 1? sl2) xR
;1-(9ugu5 — d3nougug + 40P gy )]
A
1
o2 3u3|1? [T sl@ @ sl(2) = 502,2)
uy? s 5l x B2

From the previous table we see that, if n 2> 2 and » is not equal to 2, 3 or 5, then there
is one and only one Lagrangian of order # with a variational symmetry algebra of maximal
dimension, namely L = uﬁ/ 1) (up to equivalence). On the other hand, for each of the
‘anomalous’ orders n = 2,3, 5 there are exactly two inequivalent Lagrangians possessing a
maximal variational symmetry algebra.

We have shown above that the free particle Lagrangian (1.27) does not possess a

variational symmetry algebra of maximal dimension when n > 2. However, since the
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variational symmetry algebras of two Lagrangians differing by a total derivative do not
necessarily coincide, the natural question arises of whether a function f ; J*~! - R can
be found such that the modified free particle Lagrangian

L=ul+D:f (2.28)

admits a variational symmetry algebra of dimension n + 3 for n > 2. This question can be
easily settled in the negative with the help of the previous theorem. Indeed, if (2.28) had a
{(n + 3)-dimensional variational symmetry algebra then it would be locally equivalent under
a change of variables

Foo@u)  E=ynu) | 2.29)

to one of the Lagrangians L listed in theorem 2.5. If that were the case, according to (1.25)
we would have

2
N - . un Dxf
eL(X,i,...,Up) = Duo + Dog

(2.30)

where ¢ is a constant and #; is given by equations (1.23) and (1.24). However, it is easy
to show that for n > 2 the last component i, of the nth prolongation of (2.29) is linear in
iy, that is we can write ’

By = A, 4, 0oy Uy + BX, 8, o Unp) (2.31)

for certain functions A, B : J*~! — R. (Actually, it can be shown that A depends only
on (x, i, 1), but this will not be needed in what follows.) The (local) equality (2.30) is
therefore impossible, since the right-hand side is a second-degree polynomial in «,, while
from (2.31) it follows that the left-hand side is not a polynomial in u, for any of the
Lagrangiang of theorem 2.5.

To conclude this case, we shall briefly discuss the connection of the above results with
the standard equivalence problem for Lagrangians on the line under point transformations
[93, [101, [11]. Kamran and Olver [11], have shown that the latter equivalence problem can
be reduced to an {e}-structure on J2 for all second-order Lagrangians, except for those of
the form

s

L = (A(x, u, u )ty + B(x, u, 1,))* o= :} or o = (2.32)
This result implies that the dimension of the variational symmetry algebra of any second-
order Lagrangian not of the form (2.32) is at most equal to dimJ* = 4, whereas a
Lagrangian of the form (2.32) could in pringiple have a symmetry algebra of dimension
greater than 4 for appropriate A, B. This is in total agreement with the results of proposition
2.1 and theorem 2.5, For order n > 2, the characterization of the Lagrangians for which the
equivalence problem reduces to an {e}-structure on J® is not precisely known. All we can
say in this case is therefore that, since any Lagrangian having the latter property necessarily
has a variational symmetry algebra of dimension not greater than dim J* = n <42, it cannot
be equivalent under a point transformation to one of the first three Lagrangians listed in
theorem 2.5.
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Casell n=1.

According to condition (2.19), the only Lie algebras of vector fields we have to consider
for this case are those of types 14, 7, 11-19, 23, and 25. Since we are now dealing
exclusively with first-order Lagrangians, there is an additional simplification we can make:
if the algebia contains the translations 8, and 3,, and at least one of the generators x 8y, 19;,
udy or xdy +ud,, then any first-order Lagrangian admitting such an algebra as a Lie algebra
of variational symmetries can be shown to be necessarily trivial. We can therefore exclude
such algebras from consideration, which leaves only the Lie algebras of types 1-3, 11-12,
17-19, and 23 and 25 (for r = 1). For each of these algebras, the calculation proceeds
exactly along the same lines as in the previous case, except for the following minor point.
Since the Lie algebras g; and g;; do not contain either 8, or 3, in the canonical coordinates
used in reference {8], it is convenient in these cases to change to new (local) coordinates
in which one of the generators reduces to a translation, For g, this amounts to a standard
change to polar coordinates (see below), whereas for the Lie algebra of type 17, whose
generators are :

9: + 8, x8, +ud, x28; + u?d, (2.33)
the linear change of variables

X=x+4u U=x—u
transforms the vector fields (2.33) into

dx Xdy + Udy (X2 + Uy +2XU 3y (2.34)

up to unimportant constant factors. In what follows, we shall use these coordinates in

preference to those of [8].
By way of example, we shall now give the details of the calculation for the Lie algebra

gs & s0(3), spanned by the vector fields

ud; — x9, (14 x* —u?)d, + 2xud, 2xud, + (1 + u? — x2)3,.
First of all, it is convenient to change to polar coordinates (r, #), where

Xx = rcosd i =rsind
and we regard r as the iﬁdependent variable. Under this change of coordinates, the first
two generators transform respectively into )

3 cosO(1 + 28, +sind(1 — 1),

up to irrelevant constant factors. The expression for the remaining generator is not needed,
since it equals the commutator of the first two, and therefore it is automatically an
infinitesimal variational symmetry of L if the first two generators are. Symmetry under
the first generator implies that L is a function of r and &, only, while irnposing symmetry
under the second generator we obtain the equation

L . 2rcosf
cos8L, + [sind(1+7%67) - r6, cosf)Lq = (6, sing— 2= )
e 1+r2

Since L does not depend on &, equating the coefficients of cos@ and sin 6 -in both sides of
the previous equation we obtain a system of two linear partial differential equations for L,
whose general solution is easily found to be

V147342
L =crX——r ) : 2.35
¢ 14r? 235)

¢ being an arbitrary constant of integration.
The following theorem summarizes the results of similar calculations for the remaining

Lie algebras:
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Theorem 2.6. Let L be a non-trivial first-order Lagrangian, and let us denote its variational
symmetry algebra by g*®. Then g"™ is at most three-dimensional, and if dim g"™ is exactly
equal to three then L is equivalent, under an appropriate change of local coordinates, to one
of the five Lagrangians listed in the following table 3.

Table 3. First-order Lagrangians admitting a variational symmetry algebra of maximal

* dimension,
Lagrangian Algebra Structure
eummﬂxm @=0 LS| R xR
1+
o 3 uZ ' sl(2)
JT+7%2
e i 50(3)
w0 C1ga<Lakd) g R?xR
11— u% —
- < 1) 5[(2)
@b Byt =1) Rx R R)

In contrast with the case # 2 2, the first-order free particle Lagrangian—-the fourth entry
in the previous table, for & = %—possesses a variational symmetry algebra of maximal
dimension, but is by no means the only first-order Lagrangian with this property. The
second, third and fifth Lagrangians in the previous table, apart from being inequivalent to
the free particle Lagrangian in the sense of definition 1.1, generate second-order equations
different from the free particle equation.

The above results are in complete agreement with Kamran and Olver's solution of
the equivalence problem for first-order Lagrangians on the lire under point transformations.
Indeed, Kamran and Olver [12], have proved that the latter problem is always reducible to an
{e}-structure on J!. Hence the dimension of the variational symmetry algebra of a first-order
Lagrangian cannot exceed dim J! = 3, in agreement with theorem 2.6. Furthermore, Olver,
[2], classifies all first-order Lagrangians with a three-dimensional variational symmetry
algebra under complex point transformations. (Notice, however, that in [2] two Lagrangians
differing by a constant factor are not considered to be equivalent.) To compare Olver’s
results with theorem 2.6, it is important to realize that some of the Lagrangians listed in the
latter theorem are equivalent under complex point transformations. Indeed, the Lagrangian

L=e*®ix |1 4 72
is equivalent up to a constant factor to
1-iz)/2
L = y{i-e)/ (2.36)
under the complex point transformation

F=x+u i=ilx —u)
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while the Lagrangians
352 142 .
L = yitrie Ly=+——.7
1472 i

are equivalent up to a constant factor to

J1—ul ' ' '
L= -u—“" 2.37)

respectively under the complex changes of variables
x =1 - u= %e‘ie(r +r7h

and

The Lagrangians (2.36), (2.37) and
L=e (2.38)

are not equivalent under complex point transformations, since the complexifications of
their variational symmetry algebras are clearly not isomorphic. We therefore conclude that
there are only three equivalence classes of firsi-order Lagrangians with a three-dimensional
variational symunetry algebra, up to complex point transformations and multiplication by a
constant, given by the Lagrangians {(2.36)-(2.38). This is exactly the same result obtained
in [2], since the Lagrangian (2.37) is equivalent up to a constant factor to

f, =+ ﬁf + O'ﬁz

under the point transformation
.1 .1
X = ;(u -~ Xx) =

for any complex constant o. -

We conclude this section by pointing out that, if L is one of the Lagrangians listed in
theorems 2.5 and 2.6, the functional [ L dx can be naturally interpreted as an arc length
invariant under the variational symmetry grovp of L. Indeed, if G is a (connected) finite-
dimensional Lie group of transformations of the plane, invarfance of [ L dx is expressed
infinitesimally by (1.17), for every vector field X in the Lie algebra g of G, and is thus
equivalent to requiring that g be a Lie algebra of infinitesimal variational symmetries
of L. Turthermore, if g is the variational symmetry algebra of one of the maximally
symmetric Lagrangians L(x, u, ..., t,) of theorems 2.5 and 2.6, by the latter theoretms
the only functionals f F(x,u,...,u;)dx of order r < n invariant under the Lie group of
transformations generated by g are the constant multiples of [ L dx.

The simplest instance of the above remark is provided by the maximally symmetric
first-order Lagrangian /1 + u2, with variational symmetry algebra spanned by the vector
fields 8,, 3, and ud; — x8,. The latter is the Lie algebra of the group of Euclidean motions
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(i.e. transiations and rotations) of the plane, and /1 + 12 dx is of course the well known

Euclidean line element. Another interesting first-order example is provided by the Lie
algebra gy, &~ R x R? for & = —1, which is spanned by the vector fields

ay ay xd, —ud, (2.39)
with associated invariant arc length element

L=ul” (2.40)
If we perform the change of variables

x=t+y u=t—y (2.41)
from (2.39} we obtain the equivalent basis of g

de dy yo + 13y (2.42)

which is the standard basis of the Poincaré group in R x R, Under the change of variableg
(2.41), (2.40} becomes the usual proper time element

L=y1-y (2.43)

. which is of course invariant under Poincaré transformations.

For a second-order example, take the maximally symmetric Lagrangian (i..)"", whose
variational symmetry algebra gs (cf theorem 2.5) is the Lie algebra of the group of special
affine motions of the plane {generated by translations and linear transformations with
determinant equal to one). The integral f(u,;)'/* dx is the standard arc length invariant
under the group of special plane affine motions, [13], [14], [15]. Likewise, the Lagrangian
L = u{l,/]Zulug --3u2| is symmetric under the Lie algebra g4, which generates the
following realization of SL{2)@&SL(2) as a Lie group of plane transformations:

a1x + by ﬁ~a2x+b2 i
c1x + d] - 2%+ ds

X= a,-d,- - bgc,- =1 i= 1, 2. (244)

As before, the arc length f L dx is invariant under the transformations (2.44). In particular,
L itself is invariant under the SL(2) subgroup of transformations (2.44) fixing the first
coordinate. This should come as no surprise, since L is just the square root of the Schwarzian
derivative of &, a well known SL(2) invariant. Finally, a straightforward calculation shows
that the Lagrangian

u;l (Qu%us — A8uquatis + 4Oug)1/ 3

assaciated to the Lie algebra gy & 51(3) of the group of projective plane transformations,
coincides up to a numerical factor with the projective arc element, [16].
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3. Divergence symmetries .

We shall address in this section the problem of bounding the dimension of the Lie algebra
of real analytic infinitesimal divergence symmetries, as well as locally classifying all
Lagrangians possessing a divergence symmetry algebra of maximal dimension. We shall
follow the same strategy as used in the previous section, with a few minor modifications
that we shall explain as we proceed. As in the previous section, we begin by computing
the divergence symmetry algebra of the free particle Lagrangian (1.27). To this end, it
suffices to write down an arbitraty linear combination of the generators (2.1) or (2.2) (with
k = 2n) of the symmetry algebra of the free particle equation, and impose that they satisfy
the divergence symmetry condition (1.15). The result is given by the following proposition:

Prbposition 3.1. For all n 2 1, the divergence symmetry algebra of the free particle
Lagrangian L = u2 is spanned by the 2n + 3 vector fields

a, 3, x8, 2x3y + (2n — 1)ud, %20, + (2n — Dxud,
x°9, 2€i€2n-1. 3.1

Notice that the latter Lie algebra is of type 27, with r = 2n — 1. Proceeding as
in the previous section, we should now compute the variational symumetry algebra of the
Lagrangian (2.4). However, in this case the latter Lagrangian does not have a divergence
symmetry algebra of dimension grater than n + 3, if @ # 2. This, and the fact that the
dimension of the divergence symmetry algebra is bounded by 2n + 4 (the dimension of the
symmetry algebra of the Euler-Lagrange equation; cf the introduction), suggests that in this
case the free particle Lagrangian has 2 divergence symmetry algebra of maximal dimension
for all n > 1. We shall show below that this is indeed the case. In fact, we shail prove
that any Lagrangian with a divergence symmetry algebra of maximal dimension 2n 4 3 is
locally divergence equivalent to the free particle Lagrangian.

To this end, we need to suitably generalize proposition 2.3 to infinitesima! divergence
symmetries. We start by proving the following preliminary lemma;

Lemma 3.2. Suppose that a nth-order I,agrarigian Lix,u,...,u,) satisfies a system of
N > n linear partial differential equations of the form

n_ ..
Z:T}‘p)(x)LJ "—"Dx‘f'i(xi uy"'!un—1)+o-f(x)u 1 "“<-i SN' (3'2)

If the functions n;(x), 1 £ i £ N, are real analytic and linearly independent, then there exist
Sunctions );, 0< i <n, and w such that

) .
a9 2 MG+ plxdu - 33

where 7 denotes divergence eguivalence (cf Definition 1.2).

Progf. Differentiating (3.2) twice with respect to u, we obtain

n
Y A =0 1IN
J=0
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where A =-Lp,. Since N > n, arguing as in proposition 2.3 and lemma 2.4 we conciude
that

A = Lnn = An(x),
and integrating twice we obtain

L= %)u,.,(:«:)u,zl Fo(x, iy o Un— )+ B 0, .., 1)

A Ih(ou? +ax, u, ..., w0 = L. (3.4)

Using the identities

a
—,D;|=0
[au ]
d d
— . D, | = S
[8w 4 Buj—1 721

it is straightforward to show that a total dedivative D, - @(x, 4, ..., #,—1) satisfies (3.2),
with oy = 0 and

n=1

=S,

=0

Tt follows that L also satisfies (3.2), with f; teplaced by a suitable function f'}, 1<igN.
For simplicity, we shall write f; instead of f; in what follows; substituting then (3.4) back
into (3.2) and equating the coefficients of u, on both sides of the resulting equation, we get

fi = s + il uy ) LSESN

and

n—1

S nPWarx,t, .oy tat) = Gn®Y @ty + D+ filts s, ty2) + 0102
j=0 ‘

R Dx filt sy ooy ) HG @) + DT Q)P 1IN
The lemma then easily follows by induction.

Proposition 3.3. A non-trivial Lagrangian L{x,u, ..., u,) of order n admits at most 2n
linearly independent infinitesimal divergence symmetries of the form n(x)d,.

Proof. Indeed, suppose that L had 2r 4 1 linearly independent infinitesimal divergence

symmetries 1;(x)d,, 1 < i < 2n+ 1. By the divergence symmetry condition (1.15) and the
previous lemma (with o; = () we obtain

~ =13 0l
L=L= zg}u,(x)u, + p(x)u (3.5)
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where L also admits the vector fields nx)d, 1 € i € 2n -+ 1, as infinitesimal
divergence symmetries by the invariance of this concept under divergence equivalence (cf
the introduction). From the divergence symmetry conditions applied to L we then get

n
EM%”W +un =D f; igig2n+1
j=0
whence we immediately deduce that
Lid - ;! u i
[ZH)’(M?’)‘”]u =D,z 1<i<2n+1
=0

for certain functions g; whose explicit expression is not needed. The latter equations can
only be satisfied if the coefficient of « in the left-hand side of each of them vanishes, that
is we must have

Y omP =0 1<i<2a+L (3.6)
j=0

Since L is not trivial by hypothesis, the functions A;, 1 < ¢ < #, cannot all vanish identically.
Hence there is an open interval M and a positive integer r, 1 < r < », such that A,(x) #0
forall x € M and A; = 0 on M for all i > r. By (3.6), this implies that the restrictions to
M of the functions ;, 1 £ < 2n -1, are 2r 4 | solutions of a linear differential equation
of order 2r £ 2n on M. This is of course absurd, since the analyticity of the functions #;
implies that their restrictions to A are still linearly independent.

As in the previous section, we shall now go through the list of inequivalent Lie algebras
of vector fields in table 1, computing the most general non-trivial Lagrangian of order »
admitting each of these algebras as a Lie algebra of infinitesimal divergence symmetries.
Since we are only interested in Lagrangians possessing a divergence symmetry algebra of
maximal dimension, by proposition 3.1 we can assume (using the notations of the previous
section) that d; 2 2n -+ 3, and from propositionr 3.3 we must also have §; < 2r. In other
words, we can replace conditions (2.18) and (2.19) by the inequalities

<ngd -3 (3.7

Notice that in this case there is nothing special about the order n = 1, so we shall just
assume that » > 1 throughout. From (3.7), we conclude that we can exclude from our
calculation those Lie algebras that do not satisfy the condition

d; = max(5,5; +3) (3.8

thus, we only have to consider the algebras of types 5-8, 15, 16, and 26-28. Another useful
fact we shall use in what follows is that, if 8; = rn+ 1, then from Lemma 3.2 it follows that
L is of the form (3.3); this is the case for the Lie algebras of types 5, 6, and 26-28. Finally,
if L is of the form (3.3) and the scaling u#d, is an infinitesimal divergence symmetry of L,
then we must have

> hule)u} + plxyu = Dy f
(=0
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which can only be satisfied if all the functions A;, 0 < { € n, and u, and therefore L,
vanish identically. This allows us to eliminate the Lie algebras of types 6, 26, and 28, and
we are therefore left with the algebras of types 5, 7, 8, 15, 16, and 27.

Type 5. To begin with, L is of the form (3.3) in this case. From (3.7), L is first-order,
and imposing symmetry under the translations 3, and 8, we obtain that L must be of the
form, ’

L= a4 |
with A; and g constant. Demanding now that x3, — ud, be an infinitesimal divergence
symmetry of L we obtain

—3mul =D f
which implies that A; =0 and L is frivial.
Type 7. In this case, L is again a first-order Lagrangian by (3.7). Symmetry vnder the
translations @, and 3, implies that
8Ly 8Ly

= —=0

ax du
which after an elementary calculation yields

L=a(u;)+bu

with b constant. Imposing now symmetry under the scaling x3; < #d, we easily find that
a” =, and hence L is necessarily trivial.

Type 8. For this algebra, (3.7} implies that we can take # = 2. Imposing symmetry
under the generators 3y, d,, and xd, we easily obtain, as in the previous case, that L is of
the form

L = a(uy:) + b(x, u, uy).

Imposing now symmetry under the vector field xd, + 2ud, we immediately deduce that
a” = 0, and therefore L is actually equivalent to the first order Lagrangian b(x, u, uy).
From this and the fact that g- is a subalgebra of gg we conclude that L is again tivial,

Types 15 and 16. In both of these cases, n = I by (3.7). The presence of the vector
fields 8., 8,, and x8y + 19, implies then, as for gy, that L is trivial.

Type 27. From (3.7), we deduce that r = 2n — 1. We also know that L is of the form
(3.3) and demanding symmefry under the translations 8. and 3, we obtain that L must be
of the form

1 n
= 3 Z A,-uf + peu
i=1
with A;, 1 € i € n, and p constant. Imposing row that the scaling 2x3, -+ (2n — Dud, be
an infinjtesimal divergence symmetry of L we arrive at the equation

n—1
D —Daquf + 0 + Dpu = Dy f (3.9)
i=]
from which we easily deduce that
w=»xz5n=0 1€is<n—~1.
Therefore
L= %}Lnui ~ ul.
Symmetry under the remaining generators follows from proposition 3.1.
The above results can be summarized in the following theorem:
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Theorem 3.4. The divergence symmetry algebra of a non-trivial Lagrangian of ordern > 1
is at most (2n + 3)-dimensional. Moreover, if L{x,u,...,u,) possesses a (2n + 3)-
dimensional divergence symmetry algebra then L is divergence equivalent (¢f Definition 1.2)
to the free particle Lagrangian L = uZ under an appropriate local change of coordinates.

4. Ordinary differential equations and evolution equations

In this section, we shall explore some elementary applications of the above results on
infinitesimal variational symmetries of Lagrangians to the symmetry analysis of ordinary
differential equations and evolution equations. For ordinary differntial equations, the basic
idea is the following. Suppose that the vector field (1.1} is an infinitesimal variational
symmetry of the Lagrangian L{x,u,...,#); equation (1,10} is then satisfied, as a
consequence of which we have

pr? X Lieo =0 (4.1)

which is exactly the condition for the vector field X to be an infinitesimal symmetry of the
nth-order ordinary differential equation

Lix,u,...,u)=0. (4.2)
In other words, we have:

Proposition 4.1. Every infinitesimal variational symmetry of a Lagrangion L is an
infinitesimal symmetry of the ordinary differential equation L = 0.

Of course, the converse need not be true; for instance, the variational symmetry algebra
of the free particle Lagrangian L = uZ is (n + 2)-dimensional, whereas the symmetry
algebra of the equation u#, = 0 is (n + 4)-dimensional for n > 2, eight-dimensional for
n = 2, and even infinite-dimensional for n == 1. From theorem 2.5 we obtain that the

ordinary differential equations

Ouus — 45usutaus + 40u3 = 0 (4.3)
and

2y —3u5 =0 4.4)

are syminetric respectively under s[(3) and sl(2) & 51(2). These are famous examples of
nth-order ordinary differential equations with an (n + 3)-dimensional symmetry algebra
given by Lie [17] (see also [18]). (In fact, for both of these equations it can be checked
that there are no additional infinitesimal symmetries which are not variational symmetries
of the corresponding Lagrangians.) '

It is a well known fact that a second-order ordinary differential equation with an eight-
dimensional symmetry algebra is necessarily equivalent under a local point transformation
to the free particle equation u,, = Q (see [2] for a modern proof). For highet-order ordinary
differential equations, an analogous result has been proved only for the linear case, [18],
[19]. It is straightforward, however, to generalize the latter result to arbitrary nonlinear

ordinary differential equations by applying the strategy used to prove theorems 2.5 and 2.6.
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First of all, by an argument totally analogous to the one used in the proof of proposition 2.3,
an nth-order ordinary differential equation has at most # lineatly independent infinitesimal
symmetries of the form n(x)d,. By Lie’s bound (1.3}, the dimension of the symmetry
algebra of an ordinary differential equation of order » > 3 is at most » + 4, which is the
dimension of the symmetry algebra of the free particle equation #, = 0. Therefore, to
find all ordinary differential equations of order n 2> 3 with a symmetry algebra of maximal
dimension # - 4, we just have to compute for each algebra g, in table 1 the most general
nth-order ordinary differential equation symumetric under g;, where the order n satisfies the
inequalities

max(3, &) <n<d—4 4.5)

d; = dimg; and, as before, 5; is the dimension of the Abelian subalgebra of g; whose
elements are the vector fields of the form »(x)3,. Equation (4.5) is very restrictive; in
fact, it is only satisfied by the Lie algebras of types 8 and 28. For the former of these Lie
algebras, an easy calculation shows that there is no fourth-order ordinary differential equation
symmetric under it, while for the latter (4.5) implies that # = r — 1, and a straightforward
computation then proves that the only rth-order ordinary differential equation symmetric
under g,g with r = n — 1 is the free particle equation u, = 0. We have thus proved the
following theorem:

Theorem 4.2. An nth-order ordinary differential equation u, = f(x,u,..., 4,.|) admits
a symmetry algebra of maximal dimension n + 4 if and only If it is locally equivalent to the
[free particle equation up, = 0 under a point transformation (1.21).

For evolution equations, the idea behind the proof of proposition 4.1 still applies, but
there is an additional complication. Indeed, suppose that the vector field (1.7) is a time-
independent time-preserving infinitesimal symmetry of the evolution equation (1.8). The
necessary and sufficient condition for this can be expressed as

(DN = uxDifumy =PI X - f (4.6)
with
D; = 3; + u;au (4’7)

cf [7]. Notice that pr™ X in (4.6) can still be computed from (1.13)~(1.14), even if now
there is an extra variable ¢, because it is acting on a function independent of # and of
derivatives of u with respect to ¢. Using (4.7), we can rewrite (4.6) as

pr X . f 4+ Dk = fDivX 4.8
where
DivX =&+, (4.9)

is the divergence of the vector field X with respect to the standard Euclidean measure dx du.
In other words, we have proved the following proposition:

Proposition 4.3. If a vector field (1.1) with zero divergence is an infinitesimal variational
symmetry of a Lagrangian L(x,u, ..., u), then it is a time-independent time-preserving
infinitesimal symmetry of the evolution equation u, = L(x,u, ..., t,).
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For example, since ail the vector fields in the Lie algebra g have zero divergence, from
the previous proposition and theorem 2.6 it follows that this algebra is a subalgebra of the
Lie algebra of time-independent time-preserving infinitesimal symunetries of the evolution
equation

e = (e} (4.10)

It is important to bear in mind, however, that the connecticn established by proposition
4.3 between the infinitesimal variational symmetries of a Lagrangian L and the infinitesimal
symmetries of its associated evolution equation #, = L is highly coordinate-dependent, in
view of the quite different transformation properties of both objects. On the other hand, the
analogous connection betweent L and the ordinary differential equation L = 0 is infrinsic,
by equation (1.22).

In general, it would be desirable to remove the restriction that X have zero divergence
in proposition 4.3. In particular, we would like to relate each of the maximally symmetric
Lagrangians of order » > 2 found in section 2 to an evolution equation, so that the
full variational symmetry algebra of each of these Lagrangians be a Lie algebra of time-
independent time-preserving infinitesimal symmetries of the associated evolution equation,
More precisely, let g be a Lie algebra of vector fields in R?; let

£=[Jc*U"R)
nzzl

“and let L[g] denote the vector space of all Lagrangians admitting g as a Lie algebra
of variational symmetries. What we want is to find a (not necessarily linear) functional
F : £{g]l - & such that for every L € L[g], the evolution equation u, = F[L] admits g
as a Lie algebra of time-independent time-preserving infinitesimal symmetries. Proposition
4.3 tells us that if g is a subalgebra of the (infinite-dimensional) Lie algebra of vector fields
with zero divergence then we can simply take as F the canonical injection £[g] — £, but
this choice will not work in general. Instead, we shall try the simple ansatz

FIL)=Glx,u, ..., up) F(L) (4.11)

where the positive integer k and the functions G : J* = R, F : R — R are fixed (i.e. they
depend only on g, but not on L € L[g]). Of course, in principle there is no guarantee that
such an ansatz will be appropriate for an arbitrary Lie algebra g, but we shall now show
that if g is any of the variational symmetry algebras of maximal dimension of theorem 2.5,
the functional (4.11) does in fact do the job.

Indeed, suppose that the evolution equation

=G F(L) 412

admits the vector field X given by (1.1) as an infinitesimal symmetry, whenever X is an
infinitesimal variational symmetry of L. Using (4.8) and (1.10), we immediately arrive at
the equation g

4

pr® X . logG — L%st =y — Eylix. (4.13)

The structure of this equation, which must be valid for all X € g and all L € L[g] for a
given Lie algebra g, suggests that we set .

LF=C
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or equivalently

F(Ly=L* (4.14)
where ¢ is a constant (depending on g). Equaticn (4.13) then simplifies to

pr® X . log G = cDLE + 1, — £,y (4.15)

which is an equation in & only.

The Lie algebras gg and g;¢ both contain the vector fields 3., 8,, and x8; 4 aud, for
arbitrary «. Demanding that (4.15) be satisfied by the latter vector fields we deduce that G
is a function of the derivatives {uy, us, ..., #;) only, satisfying

\ _
D (e —ui(logG) = c+a Yo e R (4.16)

fe=]
Again, the simplest way of satisfying (4.16) is by assuming that G is a function of one of
the derivatives of 1 only, that is G = G{x;). In that case, (4.16) immediately yields

G =y c=—k. .17
Thus, for both g and g4 our ansatz for the associated evolution equation is of the form

w=wml* ' (4.18)
where the positive integer & has yet to be determined. For g, imposing that the vector
field x29,. be an infinitesimal symmetry of (4.18) we get, using equation (4.15),

Bl (4.19)
Ui

k=1

from which we deduce that & = 1 for the Lie glgebra g,5. For this value of &, equation
(4.15) is automatically satisfied by the remaining generator x23,. This proves the following
proposition: )

Proposition 4.4.  Ifthe Lagrangian L admits the algebra g, as a Lie algebra of infinitesimal
variational symmetries, then the evolution equation

uy = L1 (4.20)
is symumetric under gq.

For the Lie algebra gg, symmetry of (4.18) under the generator x3, implies, by (4.15)
and (4.17), that k > 1. Imposing now that (4.15) be satisfied by the vector field x28, + xud,
we get

k2 -kt — g (4.21)
/33

which implies that ¥ = 2 for this aigebra. It is then straightforward to check that the
remaining generators satisfy equation (4.15). Hence we have:
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Proposition4.5. Ifthe Lie algebra gg is a Lie algebra of infinitesimal variational symmetries
for the Lagrangian L, ther the evolution equation

Uy =, L2 (4.22)
is symmetric under gg.

Finally, consider the Lie algebra g4, with r = n — 1. Symmetry under the vector fields
3, and x'8,, 0 < i < n — 1, implies that G is independent of x, u and derivatives of u
of order less than or equal to n — 1. H we assume, for simplicity, that G is a function of
iy only, equation (4.15) is the same for the remaining generators 2x8, 4 (n — D)ud, and
x%8, + (n — Dxud,, and implies that ) ’

G = uf}l—n—-zc)/(l+n)

for arbitrary c¢. Hence:

Proposition 4.6.. Let g denote the algebra g,; withr = n— 1. Ifa Lagrangian L admits g as
a Lie algebra of infinitesimal variational symmetries, then g is a Lie algebra of infinitesimal
symmetries for the evolution equation ’

uy = ull=r-2 A pe (4.23)
foraliceR.

Applying propositions 4.4-4.6 to the maximally symmetric Lagrangians listed in
theorem 2.5 and using (4.10), we obtain the following list of nth-order evolution
equations possessing an (n+4-3)-dimensional Lie algebra of time-independent time-preserving
infinitesimal symmetries, as in table 4.

Table 4. Evolution equations with a Lie algebra of time-independent time-preserving
infinitesimal point symmetries of maximal dimension.

Equation Algebra Structure

e == (tex)® gs 50(2) x R?

= w22ty — Sud |12 16 sl2) @ sl2) ~ 512,2)
wuy = u3(Sudus — 4Suguzng + 4053y gy sk

up = IR (5 2 pe=n-1 slOxE

By the result of Sokolov quoted in the introduction, for each of these evolution equations
the Lie algebra of vector fields listed next to it in the previous table is exactly equal to
its Lie algebra of time-independent time-preserving infinitesimal symmetries. The latter
equations thus possess a Lie algebra of time-independent time-preserving infinitesimal
{contact) symmetries of maximal dimension. In fact, the above table reproduces the list of
equivalence classes (under contact transformations) of evoluation equations with a maximal
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Lie algebra of time-independent time-preserving infinitesimal contact symmetries found in
[6, pp 172-3], see also [20], with the obvious exception of the equation

uy = us(10uiuy — T0uduqug — 49udu? + 280usulus — 175u) >4

the latter equation has proper infinitesimal contact symmetries, not arising-—as for the other
equations in our table—as the first prolongation of infinitesimal point symmetries. Notice,
finally, that equation (4.10) is not listed in [6], since it is equivalent under the cortact
transformation

-1
x

t=—t X=u ﬁ:u;lu—-x

to it; = (iIzz) /3, which is the last equation in the previous table for n = 2. We have kept
both equations in our table, since they are inequivalent under point transformations; indeed,
the Lie algebras ps and go; with r = 1, though algebraically isomorphic, are not equivalent
under point transformations (the former is primitive and the Jatter is not, cf [3]).
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